Description of fast matrix multiplication algorithm: ⟨2×7×13:142⟩

Algorithm type

2X2Y6Z2+4X2Y5Z2+3XY7Z+9X2Y4Z2+4XY6Z+3X2Y3Z2+21XY5Z+22X2Y2Z2+15XY4Z+3X2YZ2+16XY3Z+11XY2Z+29XYZ2X2Y6Z24X2Y5Z23XY7Z9X2Y4Z24XY6Z3X2Y3Z221XY5Z22X2Y2Z215XY4Z3X2YZ216XY3Z11XY2Z29XYZ2*X^2*Y^6*Z^2+4*X^2*Y^5*Z^2+3*X*Y^7*Z+9*X^2*Y^4*Z^2+4*X*Y^6*Z+3*X^2*Y^3*Z^2+21*X*Y^5*Z+22*X^2*Y^2*Z^2+15*X*Y^4*Z+3*X^2*Y*Z^2+16*X*Y^3*Z+11*X*Y^2*Z+29*X*Y*Z

Algorithm definition

The algorithm ⟨2×7×13:142⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table