Description of fast matrix multiplication algorithm: ⟨2 × 3 × 31:155⟩

Algorithm type

[[1, 1, 1]$78,[1, 2, 1]$30,[1, 3, 1]$16,[2, 2, 2]$31]

Algorithm definition

The algorithm ⟨2 × 3 × 31:155⟩ could be constructed using the following decomposition:

⟨2 × 3 × 31:155⟩ = ⟨2 × 3 × 3:15⟩ + ⟨2 × 3 × 28:140⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_1_30B_1_31B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_2_30B_2_31B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_3_30B_3_31C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2C_13_1C_13_2C_14_1C_14_2C_15_1C_15_2C_16_1C_16_2C_17_1C_17_2C_18_1C_18_2C_19_1C_19_2C_20_1C_20_2C_21_1C_21_2C_22_1C_22_2C_23_1C_23_2C_24_1C_24_2C_25_1C_25_2C_26_1C_26_2C_27_1C_27_2C_28_1C_28_2C_29_1C_29_2C_30_1C_30_2C_31_1C_31_2=TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_1B_1_2B_1_3B_2_1B_2_2B_2_3B_3_1B_3_2B_3_3C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2+TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_1_30B_1_31B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_2_30B_2_31B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_3_30B_3_31C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2C_13_1C_13_2C_14_1C_14_2C_15_1C_15_2C_16_1C_16_2C_17_1C_17_2C_18_1C_18_2C_19_1C_19_2C_20_1C_20_2C_21_1C_21_2C_22_1C_22_2C_23_1C_23_2C_24_1C_24_2C_25_1C_25_2C_26_1C_26_2C_27_1C_27_2C_28_1C_28_2C_29_1C_29_2C_30_1C_30_2C_31_1C_31_2TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_1_30B_1_31B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_2_30B_2_31B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_3_30B_3_31C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2C_13_1C_13_2C_14_1C_14_2C_15_1C_15_2C_16_1C_16_2C_17_1C_17_2C_18_1C_18_2C_19_1C_19_2C_20_1C_20_2C_21_1C_21_2C_22_1C_22_2C_23_1C_23_2C_24_1C_24_2C_25_1C_25_2C_26_1C_26_2C_27_1C_27_2C_28_1C_28_2C_29_1C_29_2C_30_1C_30_2C_31_1C_31_2TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_1B_1_2B_1_3B_2_1B_2_2B_2_3B_3_1B_3_2B_3_3C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_1_30B_1_31B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_2_30B_2_31B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_3_30B_3_31C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2C_13_1C_13_2C_14_1C_14_2C_15_1C_15_2C_16_1C_16_2C_17_1C_17_2C_18_1C_18_2C_19_1C_19_2C_20_1C_20_2C_21_1C_21_2C_22_1C_22_2C_23_1C_23_2C_24_1C_24_2C_25_1C_25_2C_26_1C_26_2C_27_1C_27_2C_28_1C_28_2C_29_1C_29_2C_30_1C_30_2C_31_1C_31_2Trace(Mul(Matrix(2, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3]]),Matrix(3, 31, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21,B_1_22,B_1_23,B_1_24,B_1_25,B_1_26,B_1_27,B_1_28,B_1_29,B_1_30,B_1_31],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21,B_2_22,B_2_23,B_2_24,B_2_25,B_2_26,B_2_27,B_2_28,B_2_29,B_2_30,B_2_31],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21,B_3_22,B_3_23,B_3_24,B_3_25,B_3_26,B_3_27,B_3_28,B_3_29,B_3_30,B_3_31]]),Matrix(31, 2, [[C_1_1,C_1_2],[C_2_1,C_2_2],[C_3_1,C_3_2],[C_4_1,C_4_2],[C_5_1,C_5_2],[C_6_1,C_6_2],[C_7_1,C_7_2],[C_8_1,C_8_2],[C_9_1,C_9_2],[C_10_1,C_10_2],[C_11_1,C_11_2],[C_12_1,C_12_2],[C_13_1,C_13_2],[C_14_1,C_14_2],[C_15_1,C_15_2],[C_16_1,C_16_2],[C_17_1,C_17_2],[C_18_1,C_18_2],[C_19_1,C_19_2],[C_20_1,C_20_2],[C_21_1,C_21_2],[C_22_1,C_22_2],[C_23_1,C_23_2],[C_24_1,C_24_2],[C_25_1,C_25_2],[C_26_1,C_26_2],[C_27_1,C_27_2],[C_28_1,C_28_2],[C_29_1,C_29_2],[C_30_1,C_30_2],[C_31_1,C_31_2]]))) = Trace(Mul(Matrix(2, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3]]),Matrix(3, 3, [[B_1_1,B_1_2,B_1_3],[B_2_1,B_2_2,B_2_3],[B_3_1,B_3_2,B_3_3]]),Matrix(3, 2, [[C_1_1,C_1_2],[C_2_1,C_2_2],[C_3_1,C_3_2]])))+Trace(Mul(Matrix(2, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3]]),Matrix(3, 28, [[B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21,B_1_22,B_1_23,B_1_24,B_1_25,B_1_26,B_1_27,B_1_28,B_1_29,B_1_30,B_1_31],[B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21,B_2_22,B_2_23,B_2_24,B_2_25,B_2_26,B_2_27,B_2_28,B_2_29,B_2_30,B_2_31],[B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21,B_3_22,B_3_23,B_3_24,B_3_25,B_3_26,B_3_27,B_3_28,B_3_29,B_3_30,B_3_31]]),Matrix(28, 2, [[C_4_1,C_4_2],[C_5_1,C_5_2],[C_6_1,C_6_2],[C_7_1,C_7_2],[C_8_1,C_8_2],[C_9_1,C_9_2],[C_10_1,C_10_2],[C_11_1,C_11_2],[C_12_1,C_12_2],[C_13_1,C_13_2],[C_14_1,C_14_2],[C_15_1,C_15_2],[C_16_1,C_16_2],[C_17_1,C_17_2],[C_18_1,C_18_2],[C_19_1,C_19_2],[C_20_1,C_20_2],[C_21_1,C_21_2],[C_22_1,C_22_2],[C_23_1,C_23_2],[C_24_1,C_24_2],[C_25_1,C_25_2],[C_26_1,C_26_2],[C_27_1,C_27_2],[C_28_1,C_28_2],[C_29_1,C_29_2],[C_30_1,C_30_2],[C_31_1,C_31_2]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table