Description of fast matrix multiplication algorithm: ⟨2×27×29:1189⟩

Algorithm type

2XY20Z+3XY19Z+XY18Z+2XY17Z+5XY16Z+10XY15Z+12XY14Z+5XY13Z+4XY12Z+5XY11Z+2XY10Z+2XY9Z+13XY8Z+3XY7Z+19X2Y4Z2+4XY6Z+110X2Y3Z2+3XY5Z+248X2Y2Z2+4XY4Z+10XY3Z+142XY2Z+580XYZ2XY20Z3XY19ZXY18Z2XY17Z5XY16Z10XY15Z12XY14Z5XY13Z4XY12Z5XY11Z2XY10Z2XY9Z13XY8Z3XY7Z19X2Y4Z24XY6Z110X2Y3Z23XY5Z248X2Y2Z24XY4Z10XY3Z142XY2Z580XYZ2*X*Y^20*Z+3*X*Y^19*Z+X*Y^18*Z+2*X*Y^17*Z+5*X*Y^16*Z+10*X*Y^15*Z+12*X*Y^14*Z+5*X*Y^13*Z+4*X*Y^12*Z+5*X*Y^11*Z+2*X*Y^10*Z+2*X*Y^9*Z+13*X*Y^8*Z+3*X*Y^7*Z+19*X^2*Y^4*Z^2+4*X*Y^6*Z+110*X^2*Y^3*Z^2+3*X*Y^5*Z+248*X^2*Y^2*Z^2+4*X*Y^4*Z+10*X*Y^3*Z+142*X*Y^2*Z+580*X*Y*Z

Algorithm definition

The algorithm ⟨2×27×29:1189⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table