Description of fast matrix multiplication algorithm: ⟨2×26×27:1067⟩

Algorithm type

2XY18Z+20XY17Z+X2Y14Z2+19XY16Z+25X2Y13Z2+5XY15Z+22X2Y12Z2+3XY14Z+20X2Y11Z2+21XY13Z+18X2Y10Z2+28XY12Z+19X2Y9Z2+25XY11Z+17X2Y8Z2+22XY10Z+15X2Y7Z2+19XY9Z+16X2Y6Z2+20XY8Z+14X2Y5Z2+19XY7Z+12X2Y4Z2+18XY6Z+39X2Y3Z2+21XY5Z+119X2Y2Z2+21XY4Z+20XY3Z+58XY2Z+389XYZ2XY18Z20XY17ZX2Y14Z219XY16Z25X2Y13Z25XY15Z22X2Y12Z23XY14Z20X2Y11Z221XY13Z18X2Y10Z228XY12Z19X2Y9Z225XY11Z17X2Y8Z222XY10Z15X2Y7Z219XY9Z16X2Y6Z220XY8Z14X2Y5Z219XY7Z12X2Y4Z218XY6Z39X2Y3Z221XY5Z119X2Y2Z221XY4Z20XY3Z58XY2Z389XYZ2*X*Y^18*Z+20*X*Y^17*Z+X^2*Y^14*Z^2+19*X*Y^16*Z+25*X^2*Y^13*Z^2+5*X*Y^15*Z+22*X^2*Y^12*Z^2+3*X*Y^14*Z+20*X^2*Y^11*Z^2+21*X*Y^13*Z+18*X^2*Y^10*Z^2+28*X*Y^12*Z+19*X^2*Y^9*Z^2+25*X*Y^11*Z+17*X^2*Y^8*Z^2+22*X*Y^10*Z+15*X^2*Y^7*Z^2+19*X*Y^9*Z+16*X^2*Y^6*Z^2+20*X*Y^8*Z+14*X^2*Y^5*Z^2+19*X*Y^7*Z+12*X^2*Y^4*Z^2+18*X*Y^6*Z+39*X^2*Y^3*Z^2+21*X*Y^5*Z+119*X^2*Y^2*Z^2+21*X*Y^4*Z+20*X*Y^3*Z+58*X*Y^2*Z+389*X*Y*Z

Algorithm definition

The algorithm ⟨2×26×27:1067⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table