Description of fast matrix multiplication algorithm: ⟨2×25×26:988⟩

Algorithm type

XY20Z+12XY19Z+14XY18Z+4XY17Z+6X2Y14Z2+5XY16Z+18X2Y13Z2+4XY15Z+13X2Y12Z2+3XY14Z+17X2Y11Z2+21XY13Z+12X2Y10Z2+15XY12Z+14X2Y9Z2+18XY11Z+11X2Y8Z2+14XY10Z+14X2Y7Z2+16XY9Z+10X2Y6Z2+14XY8Z+14X2Y5Z2+18XY7Z+9X2Y4Z2+15XY6Z+51X2Y3Z2+16XY5Z+123X2Y2Z2+14XY4Z+15XY3Z+54XY2Z+403XYZXY20Z12XY19Z14XY18Z4XY17Z6X2Y14Z25XY16Z18X2Y13Z24XY15Z13X2Y12Z23XY14Z17X2Y11Z221XY13Z12X2Y10Z215XY12Z14X2Y9Z218XY11Z11X2Y8Z214XY10Z14X2Y7Z216XY9Z10X2Y6Z214XY8Z14X2Y5Z218XY7Z9X2Y4Z215XY6Z51X2Y3Z216XY5Z123X2Y2Z214XY4Z15XY3Z54XY2Z403XYZX*Y^20*Z+12*X*Y^19*Z+14*X*Y^18*Z+4*X*Y^17*Z+6*X^2*Y^14*Z^2+5*X*Y^16*Z+18*X^2*Y^13*Z^2+4*X*Y^15*Z+13*X^2*Y^12*Z^2+3*X*Y^14*Z+17*X^2*Y^11*Z^2+21*X*Y^13*Z+12*X^2*Y^10*Z^2+15*X*Y^12*Z+14*X^2*Y^9*Z^2+18*X*Y^11*Z+11*X^2*Y^8*Z^2+14*X*Y^10*Z+14*X^2*Y^7*Z^2+16*X*Y^9*Z+10*X^2*Y^6*Z^2+14*X*Y^8*Z+14*X^2*Y^5*Z^2+18*X*Y^7*Z+9*X^2*Y^4*Z^2+15*X*Y^6*Z+51*X^2*Y^3*Z^2+16*X*Y^5*Z+123*X^2*Y^2*Z^2+14*X*Y^4*Z+15*X*Y^3*Z+54*X*Y^2*Z+403*X*Y*Z

Algorithm definition

The algorithm ⟨2×25×26:988⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table