Description of fast matrix multiplication algorithm: ⟨2×24×26:949⟩

Algorithm type

XY23Z+3XY22Z+XY21Z+3XY20Z+2XY19Z+2XY18Z+3XY17Z+3XY16Z+2XY15Z+5XY14Z+6XY13Z+7XY12Z+5XY11Z+5XY10Z+4XY9Z+5XY8Z+X2Y5Z2+5XY7Z+14X2Y4Z2+4XY6Z+135X2Y3Z2+3XY5Z+149X2Y2Z2+4XY4Z+15XY3Z+144XY2Z+418XYZXY23Z3XY22ZXY21Z3XY20Z2XY19Z2XY18Z3XY17Z3XY16Z2XY15Z5XY14Z6XY13Z7XY12Z5XY11Z5XY10Z4XY9Z5XY8ZX2Y5Z25XY7Z14X2Y4Z24XY6Z135X2Y3Z23XY5Z149X2Y2Z24XY4Z15XY3Z144XY2Z418XYZX*Y^23*Z+3*X*Y^22*Z+X*Y^21*Z+3*X*Y^20*Z+2*X*Y^19*Z+2*X*Y^18*Z+3*X*Y^17*Z+3*X*Y^16*Z+2*X*Y^15*Z+5*X*Y^14*Z+6*X*Y^13*Z+7*X*Y^12*Z+5*X*Y^11*Z+5*X*Y^10*Z+4*X*Y^9*Z+5*X*Y^8*Z+X^2*Y^5*Z^2+5*X*Y^7*Z+14*X^2*Y^4*Z^2+4*X*Y^6*Z+135*X^2*Y^3*Z^2+3*X*Y^5*Z+149*X^2*Y^2*Z^2+4*X*Y^4*Z+15*X*Y^3*Z+144*X*Y^2*Z+418*X*Y*Z

Algorithm definition

The algorithm ⟨2×24×26:949⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table