Description of fast matrix multiplication algorithm: ⟨2×23×24:840⟩

Algorithm type

2XY23Z+2XY22Z+2XY21Z+2XY20Z+2XY19Z+4XY18Z+2XY17Z+2XY16Z+2XY15Z+2XY14Z+2XY13Z+2XY12Z+6XY11Z+4XY10Z+4XY9Z+4XY8Z+8XY7Z+4XY6Z+120X2Y3Z2+4XY5Z+144X2Y2Z2+4XY4Z+4XY3Z+122XY2Z+386XYZ2XY23Z2XY22Z2XY21Z2XY20Z2XY19Z4XY18Z2XY17Z2XY16Z2XY15Z2XY14Z2XY13Z2XY12Z6XY11Z4XY10Z4XY9Z4XY8Z8XY7Z4XY6Z120X2Y3Z24XY5Z144X2Y2Z24XY4Z4XY3Z122XY2Z386XYZ2*X*Y^23*Z+2*X*Y^22*Z+2*X*Y^21*Z+2*X*Y^20*Z+2*X*Y^19*Z+4*X*Y^18*Z+2*X*Y^17*Z+2*X*Y^16*Z+2*X*Y^15*Z+2*X*Y^14*Z+2*X*Y^13*Z+2*X*Y^12*Z+6*X*Y^11*Z+4*X*Y^10*Z+4*X*Y^9*Z+4*X*Y^8*Z+8*X*Y^7*Z+4*X*Y^6*Z+120*X^2*Y^3*Z^2+4*X*Y^5*Z+144*X^2*Y^2*Z^2+4*X*Y^4*Z+4*X*Y^3*Z+122*X*Y^2*Z+386*X*Y*Z

Algorithm definition

The algorithm ⟨2×23×24:840⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table