Description of fast matrix multiplication algorithm: ⟨2×22×24:804⟩

Algorithm type

XY20Z+2XY19Z+3XY18Z+2XY17Z+3XY16Z+3XY15Z+4XY14Z+5XY13Z+8XY12Z+4XY11Z+9XY10Z+6XY9Z+5XY8Z+2X2Y5Z2+2XY7Z+21X2Y4Z2+4XY6Z+94X2Y3Z2+2XY5Z+135X2Y2Z2+4XY4Z+22XY3Z+105XY2Z+358XYZXY20Z2XY19Z3XY18Z2XY17Z3XY16Z3XY15Z4XY14Z5XY13Z8XY12Z4XY11Z9XY10Z6XY9Z5XY8Z2X2Y5Z22XY7Z21X2Y4Z24XY6Z94X2Y3Z22XY5Z135X2Y2Z24XY4Z22XY3Z105XY2Z358XYZX*Y^20*Z+2*X*Y^19*Z+3*X*Y^18*Z+2*X*Y^17*Z+3*X*Y^16*Z+3*X*Y^15*Z+4*X*Y^14*Z+5*X*Y^13*Z+8*X*Y^12*Z+4*X*Y^11*Z+9*X*Y^10*Z+6*X*Y^9*Z+5*X*Y^8*Z+2*X^2*Y^5*Z^2+2*X*Y^7*Z+21*X^2*Y^4*Z^2+4*X*Y^6*Z+94*X^2*Y^3*Z^2+2*X*Y^5*Z+135*X^2*Y^2*Z^2+4*X*Y^4*Z+22*X*Y^3*Z+105*X*Y^2*Z+358*X*Y*Z

Algorithm definition

The algorithm ⟨2×22×24:804⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table