Description of fast matrix multiplication algorithm: ⟨2×21×22:704⟩

Algorithm type

XY17Z+11XY16Z+13XY15Z+5X2Y12Z2+4XY14Z+12X2Y11Z2+5XY13Z+11X2Y10Z2+3XY12Z+12X2Y9Z2+18XY11Z+10X2Y8Z2+12XY10Z+12X2Y7Z2+16XY9Z+9X2Y6Z2+11XY8Z+12X2Y5Z2+15XY7Z+8X2Y4Z2+13XY6Z+37X2Y3Z2+16XY5Z+92X2Y2Z2+11XY4Z+15XY3Z+39XY2Z+281XYZXY17Z11XY16Z13XY15Z5X2Y12Z24XY14Z12X2Y11Z25XY13Z11X2Y10Z23XY12Z12X2Y9Z218XY11Z10X2Y8Z212XY10Z12X2Y7Z216XY9Z9X2Y6Z211XY8Z12X2Y5Z215XY7Z8X2Y4Z213XY6Z37X2Y3Z216XY5Z92X2Y2Z211XY4Z15XY3Z39XY2Z281XYZX*Y^17*Z+11*X*Y^16*Z+13*X*Y^15*Z+5*X^2*Y^12*Z^2+4*X*Y^14*Z+12*X^2*Y^11*Z^2+5*X*Y^13*Z+11*X^2*Y^10*Z^2+3*X*Y^12*Z+12*X^2*Y^9*Z^2+18*X*Y^11*Z+10*X^2*Y^8*Z^2+12*X*Y^10*Z+12*X^2*Y^7*Z^2+16*X*Y^9*Z+9*X^2*Y^6*Z^2+11*X*Y^8*Z+12*X^2*Y^5*Z^2+15*X*Y^7*Z+8*X^2*Y^4*Z^2+13*X*Y^6*Z+37*X^2*Y^3*Z^2+16*X*Y^5*Z+92*X^2*Y^2*Z^2+11*X*Y^4*Z+15*X*Y^3*Z+39*X*Y^2*Z+281*X*Y*Z

Algorithm definition

The algorithm ⟨2×21×22:704⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table