Description of fast matrix multiplication algorithm: ⟨2×20×22:671⟩

Algorithm type

XY19Z+3XY18Z+2XY17Z+2XY16Z+2XY15Z+4XY14Z+2XY13Z+5XY12Z+6XY11Z+7XY10Z+6XY9Z+4XY8Z+X2Y5Z2+5XY7Z+11X2Y4Z2+5XY6Z+93X2Y3Z2+3XY5Z+104X2Y2Z2+4XY4Z+13XY3Z+100XY2Z+288XYZXY19Z3XY18Z2XY17Z2XY16Z2XY15Z4XY14Z2XY13Z5XY12Z6XY11Z7XY10Z6XY9Z4XY8ZX2Y5Z25XY7Z11X2Y4Z25XY6Z93X2Y3Z23XY5Z104X2Y2Z24XY4Z13XY3Z100XY2Z288XYZX*Y^19*Z+3*X*Y^18*Z+2*X*Y^17*Z+2*X*Y^16*Z+2*X*Y^15*Z+4*X*Y^14*Z+2*X*Y^13*Z+5*X*Y^12*Z+6*X*Y^11*Z+7*X*Y^10*Z+6*X*Y^9*Z+4*X*Y^8*Z+X^2*Y^5*Z^2+5*X*Y^7*Z+11*X^2*Y^4*Z^2+5*X*Y^6*Z+93*X^2*Y^3*Z^2+3*X*Y^5*Z+104*X^2*Y^2*Z^2+4*X*Y^4*Z+13*X*Y^3*Z+100*X*Y^2*Z+288*X*Y*Z

Algorithm definition

The algorithm ⟨2×20×22:671⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table