Description of fast matrix multiplication algorithm: ⟨2×20×21:641⟩

Algorithm type

2XY14Z+X2Y11Z2+16XY13Z+19X2Y10Z2+15XY12Z+17X2Y9Z2+5XY11Z+15X2Y8Z2+18XY10Z+13X2Y7Z2+22XY9Z+14X2Y6Z2+18XY8Z+12X2Y5Z2+15XY7Z+10X2Y4Z2+14XY6Z+26X2Y3Z2+15XY5Z+72X2Y2Z2+16XY4Z+16XY3Z+40XY2Z+230XYZ2XY14ZX2Y11Z216XY13Z19X2Y10Z215XY12Z17X2Y9Z25XY11Z15X2Y8Z218XY10Z13X2Y7Z222XY9Z14X2Y6Z218XY8Z12X2Y5Z215XY7Z10X2Y4Z214XY6Z26X2Y3Z215XY5Z72X2Y2Z216XY4Z16XY3Z40XY2Z230XYZ2*X*Y^14*Z+X^2*Y^11*Z^2+16*X*Y^13*Z+19*X^2*Y^10*Z^2+15*X*Y^12*Z+17*X^2*Y^9*Z^2+5*X*Y^11*Z+15*X^2*Y^8*Z^2+18*X*Y^10*Z+13*X^2*Y^7*Z^2+22*X*Y^9*Z+14*X^2*Y^6*Z^2+18*X*Y^8*Z+12*X^2*Y^5*Z^2+15*X*Y^7*Z+10*X^2*Y^4*Z^2+14*X*Y^6*Z+26*X^2*Y^3*Z^2+15*X*Y^5*Z+72*X^2*Y^2*Z^2+16*X*Y^4*Z+16*X*Y^3*Z+40*X*Y^2*Z+230*X*Y*Z

Algorithm definition

The algorithm ⟨2×20×21:641⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table