Description of fast matrix multiplication algorithm: ⟨2×18×20:550⟩

Algorithm type

XY16Z+3XY15Z+2XY14Z+4XY13Z+4XY12Z+5XY11Z+8XY10Z+6XY9Z+9XY8Z+2X2Y5Z2+4XY7Z+16X2Y4Z2+2XY6Z+60X2Y3Z2+3XY5Z+92X2Y2Z2+4XY4Z+18XY3Z+69XY2Z+238XYZXY16Z3XY15Z2XY14Z4XY13Z4XY12Z5XY11Z8XY10Z6XY9Z9XY8Z2X2Y5Z24XY7Z16X2Y4Z22XY6Z60X2Y3Z23XY5Z92X2Y2Z24XY4Z18XY3Z69XY2Z238XYZX*Y^16*Z+3*X*Y^15*Z+2*X*Y^14*Z+4*X*Y^13*Z+4*X*Y^12*Z+5*X*Y^11*Z+8*X*Y^10*Z+6*X*Y^9*Z+9*X*Y^8*Z+2*X^2*Y^5*Z^2+4*X*Y^7*Z+16*X^2*Y^4*Z^2+2*X*Y^6*Z+60*X^2*Y^3*Z^2+3*X*Y^5*Z+92*X^2*Y^2*Z^2+4*X*Y^4*Z+18*X*Y^3*Z+69*X*Y^2*Z+238*X*Y*Z

Algorithm definition

The algorithm ⟨2×18×20:550⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table