Description of fast matrix multiplication algorithm: ⟨2×17×18:468⟩

Algorithm type

XY14Z+10XY13Z+4X2Y10Z2+11XY12Z+10X2Y9Z2+5XY11Z+9X2Y8Z2+3XY10Z+10X2Y7Z2+15XY9Z+8X2Y6Z2+10XY8Z+10X2Y5Z2+13XY7Z+7X2Y4Z2+9XY6Z+26X2Y3Z2+15XY5Z+60X2Y2Z2+10XY4Z+13XY3Z+28XY2Z+181XYZXY14Z10XY13Z4X2Y10Z211XY12Z10X2Y9Z25XY11Z9X2Y8Z23XY10Z10X2Y7Z215XY9Z8X2Y6Z210XY8Z10X2Y5Z213XY7Z7X2Y4Z29XY6Z26X2Y3Z215XY5Z60X2Y2Z210XY4Z13XY3Z28XY2Z181XYZX*Y^14*Z+10*X*Y^13*Z+4*X^2*Y^10*Z^2+11*X*Y^12*Z+10*X^2*Y^9*Z^2+5*X*Y^11*Z+9*X^2*Y^8*Z^2+3*X*Y^10*Z+10*X^2*Y^7*Z^2+15*X*Y^9*Z+8*X^2*Y^6*Z^2+10*X*Y^8*Z+10*X^2*Y^5*Z^2+13*X*Y^7*Z+7*X^2*Y^4*Z^2+9*X*Y^6*Z+26*X^2*Y^3*Z^2+15*X*Y^5*Z+60*X^2*Y^2*Z^2+10*X*Y^4*Z+13*X*Y^3*Z+28*X*Y^2*Z+181*X*Y*Z

Algorithm definition

The algorithm ⟨2×17×18:468⟩ is taken from:

John Edward Hopcroft and Leslie R. Kerr. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1), January 1971. [DOI]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table