Description of fast matrix multiplication algorithm: ⟨2×13×28:560⟩

Algorithm type

2XY11Z+6X2Y8Z2+18XY10Z+18X2Y7Z2+16XY9Z+14X2Y6Z2+8XY8Z+16X2Y5Z2+24XY7Z+12X2Y4Z2+18XY6Z+36X2Y3Z2+18XY5Z+66X2Y2Z2+22XY4Z+18XY3Z+42XY2Z+206XYZ2XY11Z6X2Y8Z218XY10Z18X2Y7Z216XY9Z14X2Y6Z28XY8Z16X2Y5Z224XY7Z12X2Y4Z218XY6Z36X2Y3Z218XY5Z66X2Y2Z222XY4Z18XY3Z42XY2Z206XYZ2*X*Y^11*Z+6*X^2*Y^8*Z^2+18*X*Y^10*Z+18*X^2*Y^7*Z^2+16*X*Y^9*Z+14*X^2*Y^6*Z^2+8*X*Y^8*Z+16*X^2*Y^5*Z^2+24*X*Y^7*Z+12*X^2*Y^4*Z^2+18*X*Y^6*Z+36*X^2*Y^3*Z^2+18*X*Y^5*Z+66*X^2*Y^2*Z^2+22*X*Y^4*Z+18*X*Y^3*Z+42*X*Y^2*Z+206*X*Y*Z

Algorithm definition

The algorithm ⟨2×13×28:560⟩ is the (Kronecker) tensor product of ⟨2×13×14:280⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table