Description of fast matrix multiplication algorithm: ⟨24×27×30:10200⟩

Algorithm type

112X12Y8Z12+168X12Y4Z12+64X12Y6Z9+96X12Y3Z9+32X6Y12Z6+64X6Y10Z6+352X6Y8Z6+32X6Y10Z3+112X6Y6Z6+32X3Y12Z3+96X6Y5Z6+1232X6Y4Z6+96X3Y10Z3+96X6Y3Z6+48X6Y5Z3+1120X6Y2Z6+384X3Y8Z3+96X6YZ6+176X3Y6Z3+32X6Y2Z3+144X3Y5Z3+48X6YZ3+1632X3Y4Z3+192X3Y3Z3+2448X3Y2Z3+1296X3YZ3112X12Y8Z12168X12Y4Z1264X12Y6Z996X12Y3Z932X6Y12Z664X6Y10Z6352X6Y8Z632X6Y10Z3112X6Y6Z632X3Y12Z396X6Y5Z61232X6Y4Z696X3Y10Z396X6Y3Z648X6Y5Z31120X6Y2Z6384X3Y8Z396X6YZ6176X3Y6Z332X6Y2Z3144X3Y5Z348X6YZ31632X3Y4Z3192X3Y3Z32448X3Y2Z31296X3YZ3112*X^12*Y^8*Z^12+168*X^12*Y^4*Z^12+64*X^12*Y^6*Z^9+96*X^12*Y^3*Z^9+32*X^6*Y^12*Z^6+64*X^6*Y^10*Z^6+352*X^6*Y^8*Z^6+32*X^6*Y^10*Z^3+112*X^6*Y^6*Z^6+32*X^3*Y^12*Z^3+96*X^6*Y^5*Z^6+1232*X^6*Y^4*Z^6+96*X^3*Y^10*Z^3+96*X^6*Y^3*Z^6+48*X^6*Y^5*Z^3+1120*X^6*Y^2*Z^6+384*X^3*Y^8*Z^3+96*X^6*Y*Z^6+176*X^3*Y^6*Z^3+32*X^6*Y^2*Z^3+144*X^3*Y^5*Z^3+48*X^6*Y*Z^3+1632*X^3*Y^4*Z^3+192*X^3*Y^3*Z^3+2448*X^3*Y^2*Z^3+1296*X^3*Y*Z^3

Algorithm definition

The algorithm ⟨24×27×30:10200⟩ is the (Kronecker) tensor product of ⟨4×9×10:255⟩ with ⟨6×3×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table