Description of fast matrix multiplication algorithm: ⟨22×24×24:6802⟩

Algorithm type

2680X3Y3Z3+884X3Y3Z+200X3Y2Z2+1020X2Y3Z2+200X2Y2Z3+20X3Y2Z+106X2Y3Z+326X2Y2Z2+66X2Y2Z+84XY3Z+20XY2Z2+904XYZ3+48XY2Z+152XYZ2+92XYZ2680X3Y3Z3884X3Y3Z200X3Y2Z21020X2Y3Z2200X2Y2Z320X3Y2Z106X2Y3Z326X2Y2Z266X2Y2Z84XY3Z20XY2Z2904XYZ348XY2Z152XYZ292XYZ2680*X^3*Y^3*Z^3+884*X^3*Y^3*Z+200*X^3*Y^2*Z^2+1020*X^2*Y^3*Z^2+200*X^2*Y^2*Z^3+20*X^3*Y^2*Z+106*X^2*Y^3*Z+326*X^2*Y^2*Z^2+66*X^2*Y^2*Z+84*X*Y^3*Z+20*X*Y^2*Z^2+904*X*Y*Z^3+48*X*Y^2*Z+152*X*Y*Z^2+92*X*Y*Z

Algorithm definition

The algorithm ⟨22×24×24:6802⟩ is taken from:

Charles-Éric Drevet, Md. Nazrul Islam, and Éric Schost. Optimization techniques for small matrix multiplication. Theoretical Computer Science, 412(22):2219--2236, May 2011. [ DOI ]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table