Description of fast matrix multiplication algorithm: ⟨21×25×25:7366⟩

Algorithm type

2X2Y12Z2+X6Y6Z2+17X4Y6Z4+X2Y6Z6+6XY12Z+X2Y9Z2+47X6Y4Z2+2X4Y6Z2+799X4Y4Z4+94X2Y8Z2+2X2Y6Z4+47X2Y4Z6+XY2Z9+5X6Y3Z2+5X2Y3Z6+3XY9Z+2XY8Z2+XY4Z6+5XYZ9+235X6Y2Z2+94X4Y4Z2+3X3Y6Z+111X2Y6Z2+111X2Y4Z4+252X2Y2Z6+18XY8Z+3XY6Z3+20X6Y2Z+X4Y3Z2+X3Y4Z2+6X2Y6Z+X2Y3Z4+7XY6Z2+2XY4Z4+26XY2Z6+100X6YZ+387X4Y2Z2+9X3Y4Z+X3Y2Z3+766X2Y4Z2+370X2Y2Z4+48XY6Z+11XY4Z3+96XYZ6+40X4Y2Z+15X3Y3Z+24X3Y2Z2+5X3YZ3+58X2Y4Z+7X2Y3Z2+22X2Y2Z3+69XY4Z2+16XY3Z3+39XY2Z4+20X4YZ+71X3Y2Z+95X3YZ2+23X2Y3Z+850X2Y2Z2+101X2YZ3+169XY4Z+22XY3Z2+84XY2Z3+19XYZ4+130X3YZ+321X2Y2Z+39X2YZ2+47XY3Z+315XY2Z2+137XYZ3+166X2YZ+401XY2Z+159XYZ2+182XYZ2X2Y12Z2X6Y6Z217X4Y6Z4X2Y6Z66XY12ZX2Y9Z247X6Y4Z22X4Y6Z2799X4Y4Z494X2Y8Z22X2Y6Z447X2Y4Z6XY2Z95X6Y3Z25X2Y3Z63XY9Z2XY8Z2XY4Z65XYZ9235X6Y2Z294X4Y4Z23X3Y6Z111X2Y6Z2111X2Y4Z4252X2Y2Z618XY8Z3XY6Z320X6Y2ZX4Y3Z2X3Y4Z26X2Y6ZX2Y3Z47XY6Z22XY4Z426XY2Z6100X6YZ387X4Y2Z29X3Y4ZX3Y2Z3766X2Y4Z2370X2Y2Z448XY6Z11XY4Z396XYZ640X4Y2Z15X3Y3Z24X3Y2Z25X3YZ358X2Y4Z7X2Y3Z222X2Y2Z369XY4Z216XY3Z339XY2Z420X4YZ71X3Y2Z95X3YZ223X2Y3Z850X2Y2Z2101X2YZ3169XY4Z22XY3Z284XY2Z319XYZ4130X3YZ321X2Y2Z39X2YZ247XY3Z315XY2Z2137XYZ3166X2YZ401XY2Z159XYZ2182XYZ2*X^2*Y^12*Z^2+X^6*Y^6*Z^2+17*X^4*Y^6*Z^4+X^2*Y^6*Z^6+6*X*Y^12*Z+X^2*Y^9*Z^2+47*X^6*Y^4*Z^2+2*X^4*Y^6*Z^2+799*X^4*Y^4*Z^4+94*X^2*Y^8*Z^2+2*X^2*Y^6*Z^4+47*X^2*Y^4*Z^6+X*Y^2*Z^9+5*X^6*Y^3*Z^2+5*X^2*Y^3*Z^6+3*X*Y^9*Z+2*X*Y^8*Z^2+X*Y^4*Z^6+5*X*Y*Z^9+235*X^6*Y^2*Z^2+94*X^4*Y^4*Z^2+3*X^3*Y^6*Z+111*X^2*Y^6*Z^2+111*X^2*Y^4*Z^4+252*X^2*Y^2*Z^6+18*X*Y^8*Z+3*X*Y^6*Z^3+20*X^6*Y^2*Z+X^4*Y^3*Z^2+X^3*Y^4*Z^2+6*X^2*Y^6*Z+X^2*Y^3*Z^4+7*X*Y^6*Z^2+2*X*Y^4*Z^4+26*X*Y^2*Z^6+100*X^6*Y*Z+387*X^4*Y^2*Z^2+9*X^3*Y^4*Z+X^3*Y^2*Z^3+766*X^2*Y^4*Z^2+370*X^2*Y^2*Z^4+48*X*Y^6*Z+11*X*Y^4*Z^3+96*X*Y*Z^6+40*X^4*Y^2*Z+15*X^3*Y^3*Z+24*X^3*Y^2*Z^2+5*X^3*Y*Z^3+58*X^2*Y^4*Z+7*X^2*Y^3*Z^2+22*X^2*Y^2*Z^3+69*X*Y^4*Z^2+16*X*Y^3*Z^3+39*X*Y^2*Z^4+20*X^4*Y*Z+71*X^3*Y^2*Z+95*X^3*Y*Z^2+23*X^2*Y^3*Z+850*X^2*Y^2*Z^2+101*X^2*Y*Z^3+169*X*Y^4*Z+22*X*Y^3*Z^2+84*X*Y^2*Z^3+19*X*Y*Z^4+130*X^3*Y*Z+321*X^2*Y^2*Z+39*X^2*Y*Z^2+47*X*Y^3*Z+315*X*Y^2*Z^2+137*X*Y*Z^3+166*X^2*Y*Z+401*X*Y^2*Z+159*X*Y*Z^2+182*X*Y*Z

Algorithm definition

The algorithm ⟨21×25×25:7366⟩ is the (Kronecker) tensor product of ⟨3×5×5:58⟩ with ⟨7×5×5:127⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table