Description of fast matrix multiplication algorithm: 〈20 × 28 × 32:10094〉
Algorithm type
[[1, 1, 1]$2052,[1, 1, 2]$324,[1, 1, 3]$252,[1, 2, 1]$1116,[1, 2, 2]$252,[1, 2, 3]$36,[1, 2, 5]$36,[1, 3, 1]$396,[1, 3, 2]$72,[1, 4, 2]$36,[1, 4, 3]$36,[2, 1, 1]$36,[2, 2, 1]$72,[2, 2, 2]$2196,[2, 2, 4]$108,[2, 2, 5]$72,[2, 2, 6]$84,[2, 3, 2]$108,[2, 4, 2]$516,[2, 4, 4]$120,[2, 4, 6]$12,[2, 4, 10]$12,[2, 5, 1]$36,[2, 5, 2]$36,[2, 6, 2]$132,[2, 6, 4]$24,[2, 8, 4]$12,[2, 8, 6]$12,[3, 1, 1]$180,[3, 2, 2]$36,[3, 3, 1]$36,[3, 3, 3]$144,[3, 3, 4]$72,[3, 4, 3]$108,[4, 2, 2]$12,[4, 3, 2]$36,[4, 4, 2]$24,[4, 4, 4]$597,[4, 4, 8]$9,[4, 4, 10]$24,[4, 4, 12]$7,[4, 6, 4]$36,[4, 8, 4]$79,[4, 8, 8]$19,[4, 8, 12]$1,[4, 8, 20]$1,[4, 10, 2]$12,[4, 10, 4]$12,[4, 12, 4]$11,[4, 12, 8]$2,[4, 16, 8]$1,[4, 16, 12]$1,[5, 1, 1]$36,[5, 1, 2]$72,[6, 2, 2]$60,[6, 4, 4]$12,[6, 6, 2]$12,[6, 6, 6]$48,[6, 6, 8]$24,[6, 8, 6]$36,[8, 4, 4]$1,[8, 6, 4]$12,[8, 8, 4]$2,[8, 8, 8]$54,[8, 8, 20]$2,[8, 12, 8]$3,[8, 16, 8]$4,[8, 16, 16]$1,[8, 20, 4]$1,[8, 20, 8]$1,[10, 2, 2]$12,[10, 2, 4]$24,[12, 4, 4]$5,[12, 8, 8]$1,[12, 12, 4]$1,[12, 12, 12]$4,[12, 12, 16]$2,[12, 16, 12]$3,[16, 12, 8]$1,[16, 16, 16]$1,[20, 4, 4]$1,[20, 4, 8]$2]Algorithm definition
The algorithm 〈20 × 28 × 32:10094〉 is the (Kronecker) tensor product of 〈2 × 2 × 2:7〉 with 〈10 × 14 × 16:1442〉.
Algorithm description
These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.
Back to main table