Description of fast matrix multiplication algorithm: ⟨20×24×32:8554⟩

Algorithm type

78X8Y8Z8+6X2Y18Z2+24X12Y4Z4+12X8Y4Z8+44X4Y12Z4+6X4Y8Z8+12X4Y4Z12+2X2Y12Z4+36X8Y4Z4+122X4Y8Z4+48X4Y4Z8+30X2Y12Z2+8X6Y6Z2+4X4Y6Z4+8X2Y8Z4+4X2Y6Z6+32X6Y4Z2+12X4Y6Z2+644X4Y4Z4+24X2Y8Z2+16X2Y6Z4+16X2Y4Z6+36XY9Z+184X6Y2Z2+48X4Y4Z2+92X4Y2Z4+304X2Y6Z2+110X2Y4Z4+92X2Y2Z6+12XY6Z2+276X4Y2Z2+802X2Y4Z2+368X2Y2Z4+180XY6Z+48X3Y3Z+24X2Y3Z2+48XY4Z2+24XY3Z3+192X3Y2Z+72X2Y3Z+1106X2Y2Z2+144XY4Z+96XY3Z2+96XY2Z3+240X3YZ+288X2Y2Z+120X2YZ2+240XY3Z+444XY2Z2+120XYZ3+360X2YZ+420XY2Z+480XYZ2+300XYZ78X8Y8Z86X2Y18Z224X12Y4Z412X8Y4Z844X4Y12Z46X4Y8Z812X4Y4Z122X2Y12Z436X8Y4Z4122X4Y8Z448X4Y4Z830X2Y12Z28X6Y6Z24X4Y6Z48X2Y8Z44X2Y6Z632X6Y4Z212X4Y6Z2644X4Y4Z424X2Y8Z216X2Y6Z416X2Y4Z636XY9Z184X6Y2Z248X4Y4Z292X4Y2Z4304X2Y6Z2110X2Y4Z492X2Y2Z612XY6Z2276X4Y2Z2802X2Y4Z2368X2Y2Z4180XY6Z48X3Y3Z24X2Y3Z248XY4Z224XY3Z3192X3Y2Z72X2Y3Z1106X2Y2Z2144XY4Z96XY3Z296XY2Z3240X3YZ288X2Y2Z120X2YZ2240XY3Z444XY2Z2120XYZ3360X2YZ420XY2Z480XYZ2300XYZ78*X^8*Y^8*Z^8+6*X^2*Y^18*Z^2+24*X^12*Y^4*Z^4+12*X^8*Y^4*Z^8+44*X^4*Y^12*Z^4+6*X^4*Y^8*Z^8+12*X^4*Y^4*Z^12+2*X^2*Y^12*Z^4+36*X^8*Y^4*Z^4+122*X^4*Y^8*Z^4+48*X^4*Y^4*Z^8+30*X^2*Y^12*Z^2+8*X^6*Y^6*Z^2+4*X^4*Y^6*Z^4+8*X^2*Y^8*Z^4+4*X^2*Y^6*Z^6+32*X^6*Y^4*Z^2+12*X^4*Y^6*Z^2+644*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+16*X^2*Y^6*Z^4+16*X^2*Y^4*Z^6+36*X*Y^9*Z+184*X^6*Y^2*Z^2+48*X^4*Y^4*Z^2+92*X^4*Y^2*Z^4+304*X^2*Y^6*Z^2+110*X^2*Y^4*Z^4+92*X^2*Y^2*Z^6+12*X*Y^6*Z^2+276*X^4*Y^2*Z^2+802*X^2*Y^4*Z^2+368*X^2*Y^2*Z^4+180*X*Y^6*Z+48*X^3*Y^3*Z+24*X^2*Y^3*Z^2+48*X*Y^4*Z^2+24*X*Y^3*Z^3+192*X^3*Y^2*Z+72*X^2*Y^3*Z+1106*X^2*Y^2*Z^2+144*X*Y^4*Z+96*X*Y^3*Z^2+96*X*Y^2*Z^3+240*X^3*Y*Z+288*X^2*Y^2*Z+120*X^2*Y*Z^2+240*X*Y^3*Z+444*X*Y^2*Z^2+120*X*Y*Z^3+360*X^2*Y*Z+420*X*Y^2*Z+480*X*Y*Z^2+300*X*Y*Z

Algorithm definition

The algorithm ⟨20×24×32:8554⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨10×12×16:1222⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table