Description of fast matrix multiplication algorithm: ⟨20×24×24:6240⟩

Algorithm type

800X4Y4Z4+48X6Y2Z2+16X4Y2Z4+32X2Y6Z2+16X2Y4Z4+32X2Y2Z6+256X4Y2Z2+288X2Y4Z2+256X2Y2Z4+1936X2Y2Z2+96X3YZ+32X2YZ2+64XY3Z+32XY2Z2+64XYZ3+512X2YZ+576XY2Z+512XYZ2+672XYZ800X4Y4Z448X6Y2Z216X4Y2Z432X2Y6Z216X2Y4Z432X2Y2Z6256X4Y2Z2288X2Y4Z2256X2Y2Z41936X2Y2Z296X3YZ32X2YZ264XY3Z32XY2Z264XYZ3512X2YZ576XY2Z512XYZ2672XYZ800*X^4*Y^4*Z^4+48*X^6*Y^2*Z^2+16*X^4*Y^2*Z^4+32*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+32*X^2*Y^2*Z^6+256*X^4*Y^2*Z^2+288*X^2*Y^4*Z^2+256*X^2*Y^2*Z^4+1936*X^2*Y^2*Z^2+96*X^3*Y*Z+32*X^2*Y*Z^2+64*X*Y^3*Z+32*X*Y^2*Z^2+64*X*Y*Z^3+512*X^2*Y*Z+576*X*Y^2*Z+512*X*Y*Z^2+672*X*Y*Z

Algorithm definition

The algorithm ⟨20×24×24:6240⟩ is the (Kronecker) tensor product of ⟨4×4×4:48⟩ with ⟨5×6×6:130⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table