Description of fast matrix multiplication algorithm: ⟨20×22×30:7476⟩

Algorithm type

3X8Y8Z12+4X16Y4Z4+45X8Y8Z8+4X4Y16Z4+6X14Y4Z4+6X4Y14Z4+2X14Y2Z4+24X6Y6Z8+16X4Y8Z8+33X4Y4Z12+8X2Y16Z2+2X2Y14Z4+4X4Y8Z6+4X4Y6Z8+6X4Y2Z12+8X2Y14Z2+2X2Y12Z4+110X4Y8Z4+10X4Y4Z8+10X2Y12Z2+4X2Y6Z8+14X8Y4Z2+2X6Y4Z4+26X4Y6Z4+22X4Y4Z6+28X2Y8Z4+4X2Y4Z8+42X8Y2Z2+10X6Y4Z2+2X6Y2Z4+437X4Y4Z4+54X2Y8Z2+12X2Y6Z4+48X2Y4Z6+6X2Y2Z8+36X7Y2Z2+36X2Y7Z2+12X7YZ2+10X6Y2Z2+2X4Y4Z2+10X4Y2Z4+144X3Y3Z4+14X2Y6Z2+174X2Y4Z4+258X2Y2Z6+48XY8Z+12XY7Z2+24X2Y4Z3+24X2Y3Z4+36X2YZ6+48XY7Z+12XY6Z2+2X4Y2Z2+746X2Y4Z2+104X2Y2Z4+60XY6Z+24XY3Z4+84X4Y2Z+12X3Y2Z2+156X2Y3Z2+24X2Y2Z3+168XY4Z2+24XY2Z4+108X4YZ+60X3Y2Z+12X3YZ2+1082X2Y2Z2+180XY4Z+72XY3Z2+288XY2Z3+36XYZ4+60X3YZ+12X2Y2Z+60X2YZ2+84XY3Z+468XY2Z2+360XYZ3+12X2YZ+516XY2Z+264XYZ2+480XYZ3X8Y8Z124X16Y4Z445X8Y8Z84X4Y16Z46X14Y4Z46X4Y14Z42X14Y2Z424X6Y6Z816X4Y8Z833X4Y4Z128X2Y16Z22X2Y14Z44X4Y8Z64X4Y6Z86X4Y2Z128X2Y14Z22X2Y12Z4110X4Y8Z410X4Y4Z810X2Y12Z24X2Y6Z814X8Y4Z22X6Y4Z426X4Y6Z422X4Y4Z628X2Y8Z44X2Y4Z842X8Y2Z210X6Y4Z22X6Y2Z4437X4Y4Z454X2Y8Z212X2Y6Z448X2Y4Z66X2Y2Z836X7Y2Z236X2Y7Z212X7YZ210X6Y2Z22X4Y4Z210X4Y2Z4144X3Y3Z414X2Y6Z2174X2Y4Z4258X2Y2Z648XY8Z12XY7Z224X2Y4Z324X2Y3Z436X2YZ648XY7Z12XY6Z22X4Y2Z2746X2Y4Z2104X2Y2Z460XY6Z24XY3Z484X4Y2Z12X3Y2Z2156X2Y3Z224X2Y2Z3168XY4Z224XY2Z4108X4YZ60X3Y2Z12X3YZ21082X2Y2Z2180XY4Z72XY3Z2288XY2Z336XYZ460X3YZ12X2Y2Z60X2YZ284XY3Z468XY2Z2360XYZ312X2YZ516XY2Z264XYZ2480XYZ3*X^8*Y^8*Z^12+4*X^16*Y^4*Z^4+45*X^8*Y^8*Z^8+4*X^4*Y^16*Z^4+6*X^14*Y^4*Z^4+6*X^4*Y^14*Z^4+2*X^14*Y^2*Z^4+24*X^6*Y^6*Z^8+16*X^4*Y^8*Z^8+33*X^4*Y^4*Z^12+8*X^2*Y^16*Z^2+2*X^2*Y^14*Z^4+4*X^4*Y^8*Z^6+4*X^4*Y^6*Z^8+6*X^4*Y^2*Z^12+8*X^2*Y^14*Z^2+2*X^2*Y^12*Z^4+110*X^4*Y^8*Z^4+10*X^4*Y^4*Z^8+10*X^2*Y^12*Z^2+4*X^2*Y^6*Z^8+14*X^8*Y^4*Z^2+2*X^6*Y^4*Z^4+26*X^4*Y^6*Z^4+22*X^4*Y^4*Z^6+28*X^2*Y^8*Z^4+4*X^2*Y^4*Z^8+42*X^8*Y^2*Z^2+10*X^6*Y^4*Z^2+2*X^6*Y^2*Z^4+437*X^4*Y^4*Z^4+54*X^2*Y^8*Z^2+12*X^2*Y^6*Z^4+48*X^2*Y^4*Z^6+6*X^2*Y^2*Z^8+36*X^7*Y^2*Z^2+36*X^2*Y^7*Z^2+12*X^7*Y*Z^2+10*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+10*X^4*Y^2*Z^4+144*X^3*Y^3*Z^4+14*X^2*Y^6*Z^2+174*X^2*Y^4*Z^4+258*X^2*Y^2*Z^6+48*X*Y^8*Z+12*X*Y^7*Z^2+24*X^2*Y^4*Z^3+24*X^2*Y^3*Z^4+36*X^2*Y*Z^6+48*X*Y^7*Z+12*X*Y^6*Z^2+2*X^4*Y^2*Z^2+746*X^2*Y^4*Z^2+104*X^2*Y^2*Z^4+60*X*Y^6*Z+24*X*Y^3*Z^4+84*X^4*Y^2*Z+12*X^3*Y^2*Z^2+156*X^2*Y^3*Z^2+24*X^2*Y^2*Z^3+168*X*Y^4*Z^2+24*X*Y^2*Z^4+108*X^4*Y*Z+60*X^3*Y^2*Z+12*X^3*Y*Z^2+1082*X^2*Y^2*Z^2+180*X*Y^4*Z+72*X*Y^3*Z^2+288*X*Y^2*Z^3+36*X*Y*Z^4+60*X^3*Y*Z+12*X^2*Y^2*Z+60*X^2*Y*Z^2+84*X*Y^3*Z+468*X*Y^2*Z^2+360*X*Y*Z^3+12*X^2*Y*Z+516*X*Y^2*Z+264*X*Y*Z^2+480*X*Y*Z

Algorithm definition

The algorithm ⟨20×22×30:7476⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨10×11×15:1068⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table