Description of fast matrix multiplication algorithm: ⟨20×21×30:7170⟩

Algorithm type

3X8Y8Z12+33X8Y8Z8+9X14Y4Z4+9X4Y14Z4+3X14Y2Z4+36X6Y6Z8+12X4Y8Z8+30X4Y4Z12+3X2Y14Z4+6X4Y8Z6+6X4Y6Z8+9X4Y2Z12+18X2Y14Z2+6XY14Z2+72X4Y8Z4+9X4Y4Z8+6X2Y6Z8+3X4Y6Z4+15X4Y4Z6+24X2Y8Z4+18X7Y4Z2+72X3Y6Z4+36X8Y2Z2+9X6Y2Z4+459X4Y4Z4+48X2Y8Z2+24X2Y6Z4+60X2Y4Z6+21X2Y2Z8+24X7Y2Z2+18X2Y7Z2+12XY6Z4+6X7YZ2+45X6Y2Z2+27X4Y2Z4+72X3Y3Z4+51X2Y6Z2+135X2Y4Z4+204X2Y2Z6+72XY8Z+6XY7Z2+18X2Y4Z3+12X2Y3Z4+18X2YZ6+24XY6Z2+9X4Y2Z2+843X2Y4Z2+171X2Y2Z4+90XY6Z+12XY3Z4+72X4Y2Z+18X3Y2Z2+6X2Y3Z2+18X2Y2Z3+186XY4Z2+42XY2Z4+72X4YZ+90X3Y2Z+18X3YZ2+1038X2Y2Z2+162XY4Z+24XY3Z2+252XY2Z3+42XYZ4+90X3YZ+18X2Y2Z+54X2YZ2+90XY3Z+492XY2Z2+252XYZ3+18X2YZ+486XY2Z+306XYZ2+396XYZ3X8Y8Z1233X8Y8Z89X14Y4Z49X4Y14Z43X14Y2Z436X6Y6Z812X4Y8Z830X4Y4Z123X2Y14Z46X4Y8Z66X4Y6Z89X4Y2Z1218X2Y14Z26XY14Z272X4Y8Z49X4Y4Z86X2Y6Z83X4Y6Z415X4Y4Z624X2Y8Z418X7Y4Z272X3Y6Z436X8Y2Z29X6Y2Z4459X4Y4Z448X2Y8Z224X2Y6Z460X2Y4Z621X2Y2Z824X7Y2Z218X2Y7Z212XY6Z46X7YZ245X6Y2Z227X4Y2Z472X3Y3Z451X2Y6Z2135X2Y4Z4204X2Y2Z672XY8Z6XY7Z218X2Y4Z312X2Y3Z418X2YZ624XY6Z29X4Y2Z2843X2Y4Z2171X2Y2Z490XY6Z12XY3Z472X4Y2Z18X3Y2Z26X2Y3Z218X2Y2Z3186XY4Z242XY2Z472X4YZ90X3Y2Z18X3YZ21038X2Y2Z2162XY4Z24XY3Z2252XY2Z342XYZ490X3YZ18X2Y2Z54X2YZ290XY3Z492XY2Z2252XYZ318X2YZ486XY2Z306XYZ2396XYZ3*X^8*Y^8*Z^12+33*X^8*Y^8*Z^8+9*X^14*Y^4*Z^4+9*X^4*Y^14*Z^4+3*X^14*Y^2*Z^4+36*X^6*Y^6*Z^8+12*X^4*Y^8*Z^8+30*X^4*Y^4*Z^12+3*X^2*Y^14*Z^4+6*X^4*Y^8*Z^6+6*X^4*Y^6*Z^8+9*X^4*Y^2*Z^12+18*X^2*Y^14*Z^2+6*X*Y^14*Z^2+72*X^4*Y^8*Z^4+9*X^4*Y^4*Z^8+6*X^2*Y^6*Z^8+3*X^4*Y^6*Z^4+15*X^4*Y^4*Z^6+24*X^2*Y^8*Z^4+18*X^7*Y^4*Z^2+72*X^3*Y^6*Z^4+36*X^8*Y^2*Z^2+9*X^6*Y^2*Z^4+459*X^4*Y^4*Z^4+48*X^2*Y^8*Z^2+24*X^2*Y^6*Z^4+60*X^2*Y^4*Z^6+21*X^2*Y^2*Z^8+24*X^7*Y^2*Z^2+18*X^2*Y^7*Z^2+12*X*Y^6*Z^4+6*X^7*Y*Z^2+45*X^6*Y^2*Z^2+27*X^4*Y^2*Z^4+72*X^3*Y^3*Z^4+51*X^2*Y^6*Z^2+135*X^2*Y^4*Z^4+204*X^2*Y^2*Z^6+72*X*Y^8*Z+6*X*Y^7*Z^2+18*X^2*Y^4*Z^3+12*X^2*Y^3*Z^4+18*X^2*Y*Z^6+24*X*Y^6*Z^2+9*X^4*Y^2*Z^2+843*X^2*Y^4*Z^2+171*X^2*Y^2*Z^4+90*X*Y^6*Z+12*X*Y^3*Z^4+72*X^4*Y^2*Z+18*X^3*Y^2*Z^2+6*X^2*Y^3*Z^2+18*X^2*Y^2*Z^3+186*X*Y^4*Z^2+42*X*Y^2*Z^4+72*X^4*Y*Z+90*X^3*Y^2*Z+18*X^3*Y*Z^2+1038*X^2*Y^2*Z^2+162*X*Y^4*Z+24*X*Y^3*Z^2+252*X*Y^2*Z^3+42*X*Y*Z^4+90*X^3*Y*Z+18*X^2*Y^2*Z+54*X^2*Y*Z^2+90*X*Y^3*Z+492*X*Y^2*Z^2+252*X*Y*Z^3+18*X^2*Y*Z+486*X*Y^2*Z+306*X*Y*Z^2+396*X*Y*Z

Algorithm definition

The algorithm ⟨20×21×30:7170⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨10×7×10:478⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table