Description of fast matrix multiplication algorithm: ⟨20×21×21:5040⟩

Algorithm type

12X8Y4Z6+30X8Y4Z4+24X6Y4Z6+12X8Y4Z2+60X6Y4Z4+120X4Y4Z6+4X4Y2Z8+18X8Y2Z3+6X6Y4Z3+8X3Y2Z8+45X8Y2Z2+39X6Y4Z2+300X4Y4Z4+24X4Y2Z6+40X2Y2Z8+18X8Y2Z+6X6Y4Z+42X6Y2Z3+24X4Y4Z3+48X3Y2Z6+12X2Y6Z3+105X6Y2Z2+180X4Y4Z2+24X4Y2Z4+30X2Y6Z2+240X2Y2Z6+42X6Y2Z+24X4Y4Z+54X4Y2Z3+6X4YZ4+50X3Y2Z4+12X2Y6Z+54X2Y4Z3+155X4Y2Z2+36X4YZ3+12X3Y2Z3+14X3YZ4+135X2Y4Z2+248X2Y2Z4+4XY3Z4+54X4Y2Z+36X4YZ2+52X3Y2Z2+84X3YZ3+54X2Y4Z+162X2Y2Z3+18X2YZ4+24XY3Z3+18XY2Z4+30X4YZ+10X3Y2Z+84X3YZ2+533X2Y2Z2+108X2YZ3+24XY3Z2+108XY2Z3+38XYZ4+70X3YZ+154X2Y2Z+108X2YZ2+20XY3Z+108XY2Z2+228XYZ3+90X2YZ+90XY2Z+228XYZ2+190XYZ12X8Y4Z630X8Y4Z424X6Y4Z612X8Y4Z260X6Y4Z4120X4Y4Z64X4Y2Z818X8Y2Z36X6Y4Z38X3Y2Z845X8Y2Z239X6Y4Z2300X4Y4Z424X4Y2Z640X2Y2Z818X8Y2Z6X6Y4Z42X6Y2Z324X4Y4Z348X3Y2Z612X2Y6Z3105X6Y2Z2180X4Y4Z224X4Y2Z430X2Y6Z2240X2Y2Z642X6Y2Z24X4Y4Z54X4Y2Z36X4YZ450X3Y2Z412X2Y6Z54X2Y4Z3155X4Y2Z236X4YZ312X3Y2Z314X3YZ4135X2Y4Z2248X2Y2Z44XY3Z454X4Y2Z36X4YZ252X3Y2Z284X3YZ354X2Y4Z162X2Y2Z318X2YZ424XY3Z318XY2Z430X4YZ10X3Y2Z84X3YZ2533X2Y2Z2108X2YZ324XY3Z2108XY2Z338XYZ470X3YZ154X2Y2Z108X2YZ220XY3Z108XY2Z2228XYZ390X2YZ90XY2Z228XYZ2190XYZ12*X^8*Y^4*Z^6+30*X^8*Y^4*Z^4+24*X^6*Y^4*Z^6+12*X^8*Y^4*Z^2+60*X^6*Y^4*Z^4+120*X^4*Y^4*Z^6+4*X^4*Y^2*Z^8+18*X^8*Y^2*Z^3+6*X^6*Y^4*Z^3+8*X^3*Y^2*Z^8+45*X^8*Y^2*Z^2+39*X^6*Y^4*Z^2+300*X^4*Y^4*Z^4+24*X^4*Y^2*Z^6+40*X^2*Y^2*Z^8+18*X^8*Y^2*Z+6*X^6*Y^4*Z+42*X^6*Y^2*Z^3+24*X^4*Y^4*Z^3+48*X^3*Y^2*Z^6+12*X^2*Y^6*Z^3+105*X^6*Y^2*Z^2+180*X^4*Y^4*Z^2+24*X^4*Y^2*Z^4+30*X^2*Y^6*Z^2+240*X^2*Y^2*Z^6+42*X^6*Y^2*Z+24*X^4*Y^4*Z+54*X^4*Y^2*Z^3+6*X^4*Y*Z^4+50*X^3*Y^2*Z^4+12*X^2*Y^6*Z+54*X^2*Y^4*Z^3+155*X^4*Y^2*Z^2+36*X^4*Y*Z^3+12*X^3*Y^2*Z^3+14*X^3*Y*Z^4+135*X^2*Y^4*Z^2+248*X^2*Y^2*Z^4+4*X*Y^3*Z^4+54*X^4*Y^2*Z+36*X^4*Y*Z^2+52*X^3*Y^2*Z^2+84*X^3*Y*Z^3+54*X^2*Y^4*Z+162*X^2*Y^2*Z^3+18*X^2*Y*Z^4+24*X*Y^3*Z^3+18*X*Y^2*Z^4+30*X^4*Y*Z+10*X^3*Y^2*Z+84*X^3*Y*Z^2+533*X^2*Y^2*Z^2+108*X^2*Y*Z^3+24*X*Y^3*Z^2+108*X*Y^2*Z^3+38*X*Y*Z^4+70*X^3*Y*Z+154*X^2*Y^2*Z+108*X^2*Y*Z^2+20*X*Y^3*Z+108*X*Y^2*Z^2+228*X*Y*Z^3+90*X^2*Y*Z+90*X*Y^2*Z+228*X*Y*Z^2+190*X*Y*Z

Algorithm definition

The algorithm ⟨20×21×21:5040⟩ is the (Kronecker) tensor product of ⟨4×3×7:63⟩ with ⟨5×7×3:80⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table