Description of fast matrix multiplication algorithm: ⟨20×20×24:5280⟩

Algorithm type

640X4Y4Z4+32X6Y2Z2+16X4Y2Z4+48X2Y6Z2+16X2Y4Z4+48X2Y2Z6+192X4Y2Z2+224X2Y4Z2+208X2Y2Z4+1616X2Y2Z2+64X3YZ+32X2YZ2+96XY3Z+32XY2Z2+96XYZ3+384X2YZ+448XY2Z+416XYZ2+672XYZ640X4Y4Z432X6Y2Z216X4Y2Z448X2Y6Z216X2Y4Z448X2Y2Z6192X4Y2Z2224X2Y4Z2208X2Y2Z41616X2Y2Z264X3YZ32X2YZ296XY3Z32XY2Z296XYZ3384X2YZ448XY2Z416XYZ2672XYZ640*X^4*Y^4*Z^4+32*X^6*Y^2*Z^2+16*X^4*Y^2*Z^4+48*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+48*X^2*Y^2*Z^6+192*X^4*Y^2*Z^2+224*X^2*Y^4*Z^2+208*X^2*Y^2*Z^4+1616*X^2*Y^2*Z^2+64*X^3*Y*Z+32*X^2*Y*Z^2+96*X*Y^3*Z+32*X*Y^2*Z^2+96*X*Y*Z^3+384*X^2*Y*Z+448*X*Y^2*Z+416*X*Y*Z^2+672*X*Y*Z

Algorithm definition

The algorithm ⟨20×20×24:5280⟩ is the (Kronecker) tensor product of ⟨4×4×4:48⟩ with ⟨5×5×6:110⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table