Description of fast matrix multiplication algorithm: ⟨19×22×22:5288⟩

Algorithm type

1666X3Y3Z3+652X3Y3Z+136X3Y2Z2+1030X2Y3Z2+136X2Y2Z3+16X3Y2Z+127X2Y3Z+290X2Y2Z2+65X2Y2Z+162XY3Z+24XY2Z2+668XYZ3+66XY2Z+168XYZ2+82XYZ1666X3Y3Z3652X3Y3Z136X3Y2Z21030X2Y3Z2136X2Y2Z316X3Y2Z127X2Y3Z290X2Y2Z265X2Y2Z162XY3Z24XY2Z2668XYZ366XY2Z168XYZ282XYZ1666*X^3*Y^3*Z^3+652*X^3*Y^3*Z+136*X^3*Y^2*Z^2+1030*X^2*Y^3*Z^2+136*X^2*Y^2*Z^3+16*X^3*Y^2*Z+127*X^2*Y^3*Z+290*X^2*Y^2*Z^2+65*X^2*Y^2*Z+162*X*Y^3*Z+24*X*Y^2*Z^2+668*X*Y*Z^3+66*X*Y^2*Z+168*X*Y*Z^2+82*X*Y*Z

Algorithm definition

The algorithm ⟨19×22×22:5288⟩ is taken from:

Charles-Éric Drevet, Md. Nazrul Islam, and Éric Schost. Optimization techniques for small matrix multiplication. Theoretical Computer Science, 412(22):2219--2236, May 2011. [ DOI ]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table