Description of fast matrix multiplication algorithm: ⟨18×21×24:5000⟩

Algorithm type

32X8Y12Z12+48X4Y12Z12+32X6Y9Z12+16X12Y6Z6+48X3Y9Z12+32X10Y6Z6+16X10Y3Z6+24X6Y6Z6+48X5Y6Z6+480X4Y6Z6+24X5Y3Z6+752X2Y6Z6+48XY6Z6+192X6Y3Z3+16X2Y3Z6+288X4Y3Z3+24XY3Z6+288X3Y3Z3+1296X2Y3Z3+1296XY3Z332X8Y12Z1248X4Y12Z1232X6Y9Z1216X12Y6Z648X3Y9Z1232X10Y6Z616X10Y3Z624X6Y6Z648X5Y6Z6480X4Y6Z624X5Y3Z6752X2Y6Z648XY6Z6192X6Y3Z316X2Y3Z6288X4Y3Z324XY3Z6288X3Y3Z31296X2Y3Z31296XY3Z332*X^8*Y^12*Z^12+48*X^4*Y^12*Z^12+32*X^6*Y^9*Z^12+16*X^12*Y^6*Z^6+48*X^3*Y^9*Z^12+32*X^10*Y^6*Z^6+16*X^10*Y^3*Z^6+24*X^6*Y^6*Z^6+48*X^5*Y^6*Z^6+480*X^4*Y^6*Z^6+24*X^5*Y^3*Z^6+752*X^2*Y^6*Z^6+48*X*Y^6*Z^6+192*X^6*Y^3*Z^3+16*X^2*Y^3*Z^6+288*X^4*Y^3*Z^3+24*X*Y^3*Z^6+288*X^3*Y^3*Z^3+1296*X^2*Y^3*Z^3+1296*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨18×21×24:5000⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨6×7×4:125⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table