Description of fast matrix multiplication algorithm: ⟨18×21×24:4920⟩

Algorithm type

720X4Y6Z6+1112X2Y6Z6+16X2Y3Z9+48X4Y6Z3+48XY6Z6+24XY3Z9+16X6Y3Z3+264X2Y6Z3+160X2Y3Z6+432X4Y3Z3+288XY6Z3+240XY3Z6+24X3Y3Z3+1000X2Y3Z3+528XY3Z3720X4Y6Z61112X2Y6Z616X2Y3Z948X4Y6Z348XY6Z624XY3Z916X6Y3Z3264X2Y6Z3160X2Y3Z6432X4Y3Z3288XY6Z3240XY3Z624X3Y3Z31000X2Y3Z3528XY3Z3720*X^4*Y^6*Z^6+1112*X^2*Y^6*Z^6+16*X^2*Y^3*Z^9+48*X^4*Y^6*Z^3+48*X*Y^6*Z^6+24*X*Y^3*Z^9+16*X^6*Y^3*Z^3+264*X^2*Y^6*Z^3+160*X^2*Y^3*Z^6+432*X^4*Y^3*Z^3+288*X*Y^6*Z^3+240*X*Y^3*Z^6+24*X^3*Y^3*Z^3+1000*X^2*Y^3*Z^3+528*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨18×21×24:4920⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨6×7×4:123⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table