Description of fast matrix multiplication algorithm: ⟨18×21×21:4480⟩

Algorithm type

256X9Y6Z6+384X9Y6Z3+384X9Y3Z6+96X6Y6Z6+240X6Y4Z6+576X9Y3Z3+144X6Y3Z6+456X6Y2Z6+32X3Y8Z3+144X6YZ6+192X3Y6Z3+240X3Y4Z3+288X3Y3Z3+592X3Y2Z3+456X3YZ3256X9Y6Z6384X9Y6Z3384X9Y3Z696X6Y6Z6240X6Y4Z6576X9Y3Z3144X6Y3Z6456X6Y2Z632X3Y8Z3144X6YZ6192X3Y6Z3240X3Y4Z3288X3Y3Z3592X3Y2Z3456X3YZ3256*X^9*Y^6*Z^6+384*X^9*Y^6*Z^3+384*X^9*Y^3*Z^6+96*X^6*Y^6*Z^6+240*X^6*Y^4*Z^6+576*X^9*Y^3*Z^3+144*X^6*Y^3*Z^6+456*X^6*Y^2*Z^6+32*X^3*Y^8*Z^3+144*X^6*Y*Z^6+192*X^3*Y^6*Z^3+240*X^3*Y^4*Z^3+288*X^3*Y^3*Z^3+592*X^3*Y^2*Z^3+456*X^3*Y*Z^3

Algorithm definition

The algorithm ⟨18×21×21:4480⟩ is the (Kronecker) tensor product of ⟨3×7×7:112⟩ with ⟨6×3×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table