Description of fast matrix multiplication algorithm: ⟨18×20×24:4788⟩

Algorithm type

16X8Y12Z12+24X4Y12Z12+26X8Y8Z8+8X6Y8Z8+64X8Y6Z6+2X6Y6Z8+26X8Y4Z4+32X4Y8Z4+256X4Y6Z6+32X4Y4Z8+10X6Y4Z4+4X2Y8Z4+240X2Y6Z6+4X2Y4Z8+192X4Y4Z4+48X3Y4Z4+32X4Y4Z2+384X4Y3Z3+32X4Y2Z4+12X3Y3Z4+156X4Y2Z2+232X2Y4Z2+960X2Y3Z3+232X2Y2Z4+60X3Y2Z2+24XY4Z2+576XY3Z3+24XY2Z4+216X2Y2Z2+192X2Y2Z+192X2YZ2+240XY2Z+240XYZ216X8Y12Z1224X4Y12Z1226X8Y8Z88X6Y8Z864X8Y6Z62X6Y6Z826X8Y4Z432X4Y8Z4256X4Y6Z632X4Y4Z810X6Y4Z44X2Y8Z4240X2Y6Z64X2Y4Z8192X4Y4Z448X3Y4Z432X4Y4Z2384X4Y3Z332X4Y2Z412X3Y3Z4156X4Y2Z2232X2Y4Z2960X2Y3Z3232X2Y2Z460X3Y2Z224XY4Z2576XY3Z324XY2Z4216X2Y2Z2192X2Y2Z192X2YZ2240XY2Z240XYZ216*X^8*Y^12*Z^12+24*X^4*Y^12*Z^12+26*X^8*Y^8*Z^8+8*X^6*Y^8*Z^8+64*X^8*Y^6*Z^6+2*X^6*Y^6*Z^8+26*X^8*Y^4*Z^4+32*X^4*Y^8*Z^4+256*X^4*Y^6*Z^6+32*X^4*Y^4*Z^8+10*X^6*Y^4*Z^4+4*X^2*Y^8*Z^4+240*X^2*Y^6*Z^6+4*X^2*Y^4*Z^8+192*X^4*Y^4*Z^4+48*X^3*Y^4*Z^4+32*X^4*Y^4*Z^2+384*X^4*Y^3*Z^3+32*X^4*Y^2*Z^4+12*X^3*Y^3*Z^4+156*X^4*Y^2*Z^2+232*X^2*Y^4*Z^2+960*X^2*Y^3*Z^3+232*X^2*Y^2*Z^4+60*X^3*Y^2*Z^2+24*X*Y^4*Z^2+576*X*Y^3*Z^3+24*X*Y^2*Z^4+216*X^2*Y^2*Z^2+192*X^2*Y^2*Z+192*X^2*Y*Z^2+240*X*Y^2*Z+240*X*Y*Z^2

Algorithm definition

The algorithm ⟨18×20×24:4788⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨9×10×12:684⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table