Description of fast matrix multiplication algorithm: ⟨18×20×22:4557⟩

Algorithm type

16X8Y12Z12+24X4Y12Z12+18X8Y8Z8+2X8Y8Z6+6X6Y8Z8+38X8Y6Z6+2X6Y6Z8+2X6Y6Z6+37X8Y4Z4+22X4Y8Z4+192X4Y6Z6+24X4Y4Z8+3X10Y2Z2+X8Y4Z2+12X6Y4Z4+2X4Y8Z2+6X4Y6Z4+6X4Y4Z6+4X2Y8Z4+216X2Y6Z6+2X2Y4Z8+X8Y2Z2+3X4Y6Z2+144X4Y4Z4+10X4Y2Z6+2X2Y2Z8+12X4Y4Z3+36X3Y4Z4+8X6Y2Z2+37X4Y4Z2+228X4Y3Z3+33X4Y2Z4+12X3Y3Z4+5X2Y6Z2+5X2Y4Z4+10X2Y2Z6+12X3Y3Z3+259X4Y2Z2+157X2Y4Z2+576X2Y3Z3+165X2Y2Z4+18X5YZ+6X4Y2Z+72X3Y2Z2+12X2Y4Z+36X2Y3Z2+36X2Y2Z3+24XY4Z2+432XY3Z3+12XY2Z4+6X4YZ+18X2Y3Z+239X2Y2Z2+60X2YZ3+12XYZ4+48X3YZ+222X2Y2Z+198X2YZ2+30XY3Z+30XY2Z2+60XYZ3+222X2YZ+150XY2Z+126XYZ2+138XYZ16X8Y12Z1224X4Y12Z1218X8Y8Z82X8Y8Z66X6Y8Z838X8Y6Z62X6Y6Z82X6Y6Z637X8Y4Z422X4Y8Z4192X4Y6Z624X4Y4Z83X10Y2Z2X8Y4Z212X6Y4Z42X4Y8Z26X4Y6Z46X4Y4Z64X2Y8Z4216X2Y6Z62X2Y4Z8X8Y2Z23X4Y6Z2144X4Y4Z410X4Y2Z62X2Y2Z812X4Y4Z336X3Y4Z48X6Y2Z237X4Y4Z2228X4Y3Z333X4Y2Z412X3Y3Z45X2Y6Z25X2Y4Z410X2Y2Z612X3Y3Z3259X4Y2Z2157X2Y4Z2576X2Y3Z3165X2Y2Z418X5YZ6X4Y2Z72X3Y2Z212X2Y4Z36X2Y3Z236X2Y2Z324XY4Z2432XY3Z312XY2Z46X4YZ18X2Y3Z239X2Y2Z260X2YZ312XYZ448X3YZ222X2Y2Z198X2YZ230XY3Z30XY2Z260XYZ3222X2YZ150XY2Z126XYZ2138XYZ16*X^8*Y^12*Z^12+24*X^4*Y^12*Z^12+18*X^8*Y^8*Z^8+2*X^8*Y^8*Z^6+6*X^6*Y^8*Z^8+38*X^8*Y^6*Z^6+2*X^6*Y^6*Z^8+2*X^6*Y^6*Z^6+37*X^8*Y^4*Z^4+22*X^4*Y^8*Z^4+192*X^4*Y^6*Z^6+24*X^4*Y^4*Z^8+3*X^10*Y^2*Z^2+X^8*Y^4*Z^2+12*X^6*Y^4*Z^4+2*X^4*Y^8*Z^2+6*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+4*X^2*Y^8*Z^4+216*X^2*Y^6*Z^6+2*X^2*Y^4*Z^8+X^8*Y^2*Z^2+3*X^4*Y^6*Z^2+144*X^4*Y^4*Z^4+10*X^4*Y^2*Z^6+2*X^2*Y^2*Z^8+12*X^4*Y^4*Z^3+36*X^3*Y^4*Z^4+8*X^6*Y^2*Z^2+37*X^4*Y^4*Z^2+228*X^4*Y^3*Z^3+33*X^4*Y^2*Z^4+12*X^3*Y^3*Z^4+5*X^2*Y^6*Z^2+5*X^2*Y^4*Z^4+10*X^2*Y^2*Z^6+12*X^3*Y^3*Z^3+259*X^4*Y^2*Z^2+157*X^2*Y^4*Z^2+576*X^2*Y^3*Z^3+165*X^2*Y^2*Z^4+18*X^5*Y*Z+6*X^4*Y^2*Z+72*X^3*Y^2*Z^2+12*X^2*Y^4*Z+36*X^2*Y^3*Z^2+36*X^2*Y^2*Z^3+24*X*Y^4*Z^2+432*X*Y^3*Z^3+12*X*Y^2*Z^4+6*X^4*Y*Z+18*X^2*Y^3*Z+239*X^2*Y^2*Z^2+60*X^2*Y*Z^3+12*X*Y*Z^4+48*X^3*Y*Z+222*X^2*Y^2*Z+198*X^2*Y*Z^2+30*X*Y^3*Z+30*X*Y^2*Z^2+60*X*Y*Z^3+222*X^2*Y*Z+150*X*Y^2*Z+126*X*Y*Z^2+138*X*Y*Z

Algorithm definition

The algorithm ⟨18×20×22:4557⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨9×10×11:651⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table