Description of fast matrix multiplication algorithm: ⟨18×20×21:4284⟩

Algorithm type

12X6Y6Z4+12X2Y9Z4+4XY12Z2+30X6Y4Z4+108X4Y6Z4+12X2Y6Z6+12XY12Z+12X8Y3Z2+18X4Y3Z6+4X3Y8Z2+36X2Y9Z2+30X8Y2Z2+12X6Y2Z4+24X4Y6Z2+270X4Y4Z4+45X4Y2Z6+36X2Y8Z2+30X2Y6Z4+30X2Y4Z6+24XY9Z2+4XY8Z3+12X8YZ2+30X6Y3Z2+18X4YZ6+24X3Y6Z2+8X2Y8Z+24X2Y3Z6+72XY9Z+75X6Y2Z2+60X4Y4Z2+108X4Y2Z4+354X2Y6Z2+72X2Y2Z6+16XY8Z+24XY6Z3+30X6YZ2+4X4Y4Z+48X4Y3Z2+24X3Y4Z2+48X2Y6Z+6X2Y4Z3+12X2Y3Z4+24X2YZ6+24XY6Z2+24X4Y3Z+144X4Y2Z2+10X3Y4Z+336X2Y4Z2+36X2Y3Z3+168XY6Z+32XY4Z3+24X4Y2Z+48X4YZ2+60X3Y3Z+20X3Y2Z2+64X2Y4Z+60X2Y3Z2+36X2Y2Z3+48XY3Z3+20X4YZ+60X3Y2Z+96X2Y3Z+288X2Y2Z2+30X2YZ3+104XY4Z+20XY3Z2+68XY2Z3+50X3YZ+136X2Y2Z+24X2YZ2+108XY3Z+40XYZ3+80X2YZ+128XY2Z+40XYZ12X6Y6Z412X2Y9Z44XY12Z230X6Y4Z4108X4Y6Z412X2Y6Z612XY12Z12X8Y3Z218X4Y3Z64X3Y8Z236X2Y9Z230X8Y2Z212X6Y2Z424X4Y6Z2270X4Y4Z445X4Y2Z636X2Y8Z230X2Y6Z430X2Y4Z624XY9Z24XY8Z312X8YZ230X6Y3Z218X4YZ624X3Y6Z28X2Y8Z24X2Y3Z672XY9Z75X6Y2Z260X4Y4Z2108X4Y2Z4354X2Y6Z272X2Y2Z616XY8Z24XY6Z330X6YZ24X4Y4Z48X4Y3Z224X3Y4Z248X2Y6Z6X2Y4Z312X2Y3Z424X2YZ624XY6Z224X4Y3Z144X4Y2Z210X3Y4Z336X2Y4Z236X2Y3Z3168XY6Z32XY4Z324X4Y2Z48X4YZ260X3Y3Z20X3Y2Z264X2Y4Z60X2Y3Z236X2Y2Z348XY3Z320X4YZ60X3Y2Z96X2Y3Z288X2Y2Z230X2YZ3104XY4Z20XY3Z268XY2Z350X3YZ136X2Y2Z24X2YZ2108XY3Z40XYZ380X2YZ128XY2Z40XYZ12*X^6*Y^6*Z^4+12*X^2*Y^9*Z^4+4*X*Y^12*Z^2+30*X^6*Y^4*Z^4+108*X^4*Y^6*Z^4+12*X^2*Y^6*Z^6+12*X*Y^12*Z+12*X^8*Y^3*Z^2+18*X^4*Y^3*Z^6+4*X^3*Y^8*Z^2+36*X^2*Y^9*Z^2+30*X^8*Y^2*Z^2+12*X^6*Y^2*Z^4+24*X^4*Y^6*Z^2+270*X^4*Y^4*Z^4+45*X^4*Y^2*Z^6+36*X^2*Y^8*Z^2+30*X^2*Y^6*Z^4+30*X^2*Y^4*Z^6+24*X*Y^9*Z^2+4*X*Y^8*Z^3+12*X^8*Y*Z^2+30*X^6*Y^3*Z^2+18*X^4*Y*Z^6+24*X^3*Y^6*Z^2+8*X^2*Y^8*Z+24*X^2*Y^3*Z^6+72*X*Y^9*Z+75*X^6*Y^2*Z^2+60*X^4*Y^4*Z^2+108*X^4*Y^2*Z^4+354*X^2*Y^6*Z^2+72*X^2*Y^2*Z^6+16*X*Y^8*Z+24*X*Y^6*Z^3+30*X^6*Y*Z^2+4*X^4*Y^4*Z+48*X^4*Y^3*Z^2+24*X^3*Y^4*Z^2+48*X^2*Y^6*Z+6*X^2*Y^4*Z^3+12*X^2*Y^3*Z^4+24*X^2*Y*Z^6+24*X*Y^6*Z^2+24*X^4*Y^3*Z+144*X^4*Y^2*Z^2+10*X^3*Y^4*Z+336*X^2*Y^4*Z^2+36*X^2*Y^3*Z^3+168*X*Y^6*Z+32*X*Y^4*Z^3+24*X^4*Y^2*Z+48*X^4*Y*Z^2+60*X^3*Y^3*Z+20*X^3*Y^2*Z^2+64*X^2*Y^4*Z+60*X^2*Y^3*Z^2+36*X^2*Y^2*Z^3+48*X*Y^3*Z^3+20*X^4*Y*Z+60*X^3*Y^2*Z+96*X^2*Y^3*Z+288*X^2*Y^2*Z^2+30*X^2*Y*Z^3+104*X*Y^4*Z+20*X*Y^3*Z^2+68*X*Y^2*Z^3+50*X^3*Y*Z+136*X^2*Y^2*Z+24*X^2*Y*Z^2+108*X*Y^3*Z+40*X*Y*Z^3+80*X^2*Y*Z+128*X*Y^2*Z+40*X*Y*Z

Algorithm definition

The algorithm ⟨18×20×21:4284⟩ is the (Kronecker) tensor product of ⟨3×4×7:63⟩ with ⟨6×5×3:68⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table