Description of fast matrix multiplication algorithm: ⟨18×20×20:4160⟩

Algorithm type

40X6Y6Z8+16X3Y9Z4+40X3Y6Z4+320X4Y4Z4+40X2Y2Z8+64X3Y3Z4+128X2Y6Z2+320X2Y4Z2+16XY3Z4+40XY2Z4+1152X2Y2Z2+64XYZ4+256XY3Z+640XY2Z+1024XYZ40X6Y6Z816X3Y9Z440X3Y6Z4320X4Y4Z440X2Y2Z864X3Y3Z4128X2Y6Z2320X2Y4Z216XY3Z440XY2Z41152X2Y2Z264XYZ4256XY3Z640XY2Z1024XYZ40*X^6*Y^6*Z^8+16*X^3*Y^9*Z^4+40*X^3*Y^6*Z^4+320*X^4*Y^4*Z^4+40*X^2*Y^2*Z^8+64*X^3*Y^3*Z^4+128*X^2*Y^6*Z^2+320*X^2*Y^4*Z^2+16*X*Y^3*Z^4+40*X*Y^2*Z^4+1152*X^2*Y^2*Z^2+64*X*Y*Z^4+256*X*Y^3*Z+640*X*Y^2*Z+1024*X*Y*Z

Algorithm definition

The algorithm ⟨18×20×20:4160⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨9×4×4:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table