Description of fast matrix multiplication algorithm: ⟨18×18×30:5400⟩

Algorithm type

48X8Y12Z12+72X4Y12Z12+96X8Y6Z6+96X6Y4Z6+528X4Y6Z6+144X6Y2Z6+576X2Y6Z6+192X6Y2Z3+288X6YZ3+576X4Y3Z3+192X3Y2Z3+1440X2Y3Z3+288X3YZ3+864XY3Z348X8Y12Z1272X4Y12Z1296X8Y6Z696X6Y4Z6528X4Y6Z6144X6Y2Z6576X2Y6Z6192X6Y2Z3288X6YZ3576X4Y3Z3192X3Y2Z31440X2Y3Z3288X3YZ3864XY3Z348*X^8*Y^12*Z^12+72*X^4*Y^12*Z^12+96*X^8*Y^6*Z^6+96*X^6*Y^4*Z^6+528*X^4*Y^6*Z^6+144*X^6*Y^2*Z^6+576*X^2*Y^6*Z^6+192*X^6*Y^2*Z^3+288*X^6*Y*Z^3+576*X^4*Y^3*Z^3+192*X^3*Y^2*Z^3+1440*X^2*Y^3*Z^3+288*X^3*Y*Z^3+864*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨18×18×30:5400⟩ is the (Kronecker) tensor product of ⟨6×6×15:360⟩ with ⟨3×3×2:15⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table