Description of fast matrix multiplication algorithm: ⟨18×18×28:5055⟩

Algorithm type

48X8Y12Z12+72X4Y12Z12+96X8Y6Z6+528X4Y6Z6+576X2Y6Z6+45X4Y4Z4+18X6Y2Z2+576X4Y3Z3+36X6YZ+126X4Y2Z2+1440X2Y3Z3+864XY3Z3+72X4YZ+162X2Y2Z2+36X3YZ+216X2YZ+144XYZ48X8Y12Z1272X4Y12Z1296X8Y6Z6528X4Y6Z6576X2Y6Z645X4Y4Z418X6Y2Z2576X4Y3Z336X6YZ126X4Y2Z21440X2Y3Z3864XY3Z372X4YZ162X2Y2Z236X3YZ216X2YZ144XYZ48*X^8*Y^12*Z^12+72*X^4*Y^12*Z^12+96*X^8*Y^6*Z^6+528*X^4*Y^6*Z^6+576*X^2*Y^6*Z^6+45*X^4*Y^4*Z^4+18*X^6*Y^2*Z^2+576*X^4*Y^3*Z^3+36*X^6*Y*Z+126*X^4*Y^2*Z^2+1440*X^2*Y^3*Z^3+864*X*Y^3*Z^3+72*X^4*Y*Z+162*X^2*Y^2*Z^2+36*X^3*Y*Z+216*X^2*Y*Z+144*X*Y*Z

Algorithm definition

The algorithm ⟨18×18×28:5055⟩ is the (Kronecker) tensor product of ⟨3×3×2:15⟩ with ⟨6×6×14:337⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table