Description of fast matrix multiplication algorithm: ⟨18×18×21:3840⟩

Algorithm type

256X9Y6Z6+384X9Y6Z3+384X9Y3Z6+32X6Y6Z6+224X6Y6Z4+576X9Y3Z3+48X6Y6Z3+336X6Y6Z2+224X6Y3Z2+336X6Y3Z+96X3Y3Z4+464X3Y3Z2+480X3Y3Z256X9Y6Z6384X9Y6Z3384X9Y3Z632X6Y6Z6224X6Y6Z4576X9Y3Z348X6Y6Z3336X6Y6Z2224X6Y3Z2336X6Y3Z96X3Y3Z4464X3Y3Z2480X3Y3Z256*X^9*Y^6*Z^6+384*X^9*Y^6*Z^3+384*X^9*Y^3*Z^6+32*X^6*Y^6*Z^6+224*X^6*Y^6*Z^4+576*X^9*Y^3*Z^3+48*X^6*Y^6*Z^3+336*X^6*Y^6*Z^2+224*X^6*Y^3*Z^2+336*X^6*Y^3*Z+96*X^3*Y^3*Z^4+464*X^3*Y^3*Z^2+480*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨18×18×21:3840⟩ is the (Kronecker) tensor product of ⟨3×6×3:40⟩ with ⟨6×3×7:96⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table