Description of fast matrix multiplication algorithm: ⟨18×18×20:3672⟩

Algorithm type

36X4Y4Z6+36X6Y4Z2+54X6Y2Z4+36X4Y6Z2+324X4Y4Z4+36X2Y2Z8+72X6Y2Z2+108X2Y6Z2+72X2Y4Z4+90X2Y2Z6+36X6Y2Z+54X6YZ2+36X4Y2Z3+36X2Y6Z+36X2Y4Z3+72X6YZ+36X4Y3Z+324X4Y2Z2+36X3Y4Z+468X2Y4Z2+144X2Y2Z4+108XY6Z+54X3Y2Z2+36X2YZ4+72XY4Z2+36XY2Z4+72X3Y2Z+108X2Y3Z+144X2Y2Z2+90X2YZ3+144XY4Z+90XY2Z3+144X2Y2Z+144X2YZ2+144XY2Z2+72X2YZ+72XY2Z36X4Y4Z636X6Y4Z254X6Y2Z436X4Y6Z2324X4Y4Z436X2Y2Z872X6Y2Z2108X2Y6Z272X2Y4Z490X2Y2Z636X6Y2Z54X6YZ236X4Y2Z336X2Y6Z36X2Y4Z372X6YZ36X4Y3Z324X4Y2Z236X3Y4Z468X2Y4Z2144X2Y2Z4108XY6Z54X3Y2Z236X2YZ472XY4Z236XY2Z472X3Y2Z108X2Y3Z144X2Y2Z290X2YZ3144XY4Z90XY2Z3144X2Y2Z144X2YZ2144XY2Z272X2YZ72XY2Z36*X^4*Y^4*Z^6+36*X^6*Y^4*Z^2+54*X^6*Y^2*Z^4+36*X^4*Y^6*Z^2+324*X^4*Y^4*Z^4+36*X^2*Y^2*Z^8+72*X^6*Y^2*Z^2+108*X^2*Y^6*Z^2+72*X^2*Y^4*Z^4+90*X^2*Y^2*Z^6+36*X^6*Y^2*Z+54*X^6*Y*Z^2+36*X^4*Y^2*Z^3+36*X^2*Y^6*Z+36*X^2*Y^4*Z^3+72*X^6*Y*Z+36*X^4*Y^3*Z+324*X^4*Y^2*Z^2+36*X^3*Y^4*Z+468*X^2*Y^4*Z^2+144*X^2*Y^2*Z^4+108*X*Y^6*Z+54*X^3*Y^2*Z^2+36*X^2*Y*Z^4+72*X*Y^4*Z^2+36*X*Y^2*Z^4+72*X^3*Y^2*Z+108*X^2*Y^3*Z+144*X^2*Y^2*Z^2+90*X^2*Y*Z^3+144*X*Y^4*Z+90*X*Y^2*Z^3+144*X^2*Y^2*Z+144*X^2*Y*Z^2+144*X*Y^2*Z^2+72*X^2*Y*Z+72*X*Y^2*Z

Algorithm definition

The algorithm ⟨18×18×20:3672⟩ is the (Kronecker) tensor product of ⟨3×6×4:54⟩ with ⟨6×3×5:68⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table