Description of fast matrix multiplication algorithm: ⟨16×22×30:6090⟩

Algorithm type

X16Y16Z16+2X14Y14Z16+2X8Y16Z8+2X8Y14Z8+X8Y12Z8+2X8Y10Z8+38X8Y8Z8+2X8Y6Z8+12X7Y7Z8+8X6Y8Z8+3X8Y8Z4+6X8Y4Z8+4X6Y6Z8+6X4Y12Z4+3X4Y4Z12+4X4Y10Z4+5X8Y4Z4+108X4Y8Z4+6X4Y4Z8+14X2Y12Z2+12X4Y7Z4+4X6Y4Z4+4X4Y8Z2+20X4Y6Z4+2X2Y10Z2+4X2Y8Z4+12X4Y5Z4+6X6Y4Z2+353X4Y4Z4+40X2Y8Z2+8X2Y4Z6+12X4Y3Z4+48X3Y4Z4+6X6Y2Z2+40X4Y4Z2+46X4Y2Z4+24X3Y3Z4+56X2Y6Z2+38X2Y4Z4+26X2Y2Z6+24X2Y5Z2+48X4Y2Z2+736X2Y4Z2+62X2Y2Z4+84XY6Z+24X3Y2Z2+24X2Y4Z+84X2Y3Z2+12XY5Z+24XY4Z2+36X3Y2Z+1086X2Y2Z2+240XY4Z+48XY2Z3+36X3YZ+132X2Y2Z+60X2YZ2+120XY3Z+228XY2Z2+48XYZ3+108X2YZ+960XY2Z+156XYZ2+720XYZX16Y16Z162X14Y14Z162X8Y16Z82X8Y14Z8X8Y12Z82X8Y10Z838X8Y8Z82X8Y6Z812X7Y7Z88X6Y8Z83X8Y8Z46X8Y4Z84X6Y6Z86X4Y12Z43X4Y4Z124X4Y10Z45X8Y4Z4108X4Y8Z46X4Y4Z814X2Y12Z212X4Y7Z44X6Y4Z44X4Y8Z220X4Y6Z42X2Y10Z24X2Y8Z412X4Y5Z46X6Y4Z2353X4Y4Z440X2Y8Z28X2Y4Z612X4Y3Z448X3Y4Z46X6Y2Z240X4Y4Z246X4Y2Z424X3Y3Z456X2Y6Z238X2Y4Z426X2Y2Z624X2Y5Z248X4Y2Z2736X2Y4Z262X2Y2Z484XY6Z24X3Y2Z224X2Y4Z84X2Y3Z212XY5Z24XY4Z236X3Y2Z1086X2Y2Z2240XY4Z48XY2Z336X3YZ132X2Y2Z60X2YZ2120XY3Z228XY2Z248XYZ3108X2YZ960XY2Z156XYZ2720XYZX^16*Y^16*Z^16+2*X^14*Y^14*Z^16+2*X^8*Y^16*Z^8+2*X^8*Y^14*Z^8+X^8*Y^12*Z^8+2*X^8*Y^10*Z^8+38*X^8*Y^8*Z^8+2*X^8*Y^6*Z^8+12*X^7*Y^7*Z^8+8*X^6*Y^8*Z^8+3*X^8*Y^8*Z^4+6*X^8*Y^4*Z^8+4*X^6*Y^6*Z^8+6*X^4*Y^12*Z^4+3*X^4*Y^4*Z^12+4*X^4*Y^10*Z^4+5*X^8*Y^4*Z^4+108*X^4*Y^8*Z^4+6*X^4*Y^4*Z^8+14*X^2*Y^12*Z^2+12*X^4*Y^7*Z^4+4*X^6*Y^4*Z^4+4*X^4*Y^8*Z^2+20*X^4*Y^6*Z^4+2*X^2*Y^10*Z^2+4*X^2*Y^8*Z^4+12*X^4*Y^5*Z^4+6*X^6*Y^4*Z^2+353*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+8*X^2*Y^4*Z^6+12*X^4*Y^3*Z^4+48*X^3*Y^4*Z^4+6*X^6*Y^2*Z^2+40*X^4*Y^4*Z^2+46*X^4*Y^2*Z^4+24*X^3*Y^3*Z^4+56*X^2*Y^6*Z^2+38*X^2*Y^4*Z^4+26*X^2*Y^2*Z^6+24*X^2*Y^5*Z^2+48*X^4*Y^2*Z^2+736*X^2*Y^4*Z^2+62*X^2*Y^2*Z^4+84*X*Y^6*Z+24*X^3*Y^2*Z^2+24*X^2*Y^4*Z+84*X^2*Y^3*Z^2+12*X*Y^5*Z+24*X*Y^4*Z^2+36*X^3*Y^2*Z+1086*X^2*Y^2*Z^2+240*X*Y^4*Z+48*X*Y^2*Z^3+36*X^3*Y*Z+132*X^2*Y^2*Z+60*X^2*Y*Z^2+120*X*Y^3*Z+228*X*Y^2*Z^2+48*X*Y*Z^3+108*X^2*Y*Z+960*X*Y^2*Z+156*X*Y*Z^2+720*X*Y*Z

Algorithm definition

The algorithm ⟨16×22×30:6090⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨8×11×15:870⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table