Description of fast matrix multiplication algorithm: ⟨16×22×24:4837⟩

Algorithm type

X16Y16Z16+2X14Y14Z16+2X8Y16Z8+2X8Y14Z8+34X8Y8Z8+4X8Y6Z8+12X7Y7Z8+4X6Y8Z8+4X6Y6Z8+72X4Y8Z4+6X2Y12Z2+12X4Y7Z4+8X4Y6Z4+4X2Y8Z4+6X6Y4Z2+334X4Y4Z4+2X2Y8Z2+4X2Y4Z6+24X4Y3Z4+24X3Y4Z4+6X6Y2Z2+2X4Y4Z2+10X4Y2Z4+24X3Y3Z4+6X2Y6Z2+32X2Y4Z4+4X2Y2Z6+2X4Y2Z2+504X2Y4Z2+24X2Y2Z4+36XY6Z+48X2Y3Z2+24XY4Z2+36X3Y2Z+1154X2Y2Z2+12XY4Z+24XY2Z3+36X3YZ+12X2Y2Z+60X2YZ2+36XY3Z+192XY2Z2+24XYZ3+12X2YZ+864XY2Z+144XYZ2+948XYZX16Y16Z162X14Y14Z162X8Y16Z82X8Y14Z834X8Y8Z84X8Y6Z812X7Y7Z84X6Y8Z84X6Y6Z872X4Y8Z46X2Y12Z212X4Y7Z48X4Y6Z44X2Y8Z46X6Y4Z2334X4Y4Z42X2Y8Z24X2Y4Z624X4Y3Z424X3Y4Z46X6Y2Z22X4Y4Z210X4Y2Z424X3Y3Z46X2Y6Z232X2Y4Z44X2Y2Z62X4Y2Z2504X2Y4Z224X2Y2Z436XY6Z48X2Y3Z224XY4Z236X3Y2Z1154X2Y2Z212XY4Z24XY2Z336X3YZ12X2Y2Z60X2YZ236XY3Z192XY2Z224XYZ312X2YZ864XY2Z144XYZ2948XYZX^16*Y^16*Z^16+2*X^14*Y^14*Z^16+2*X^8*Y^16*Z^8+2*X^8*Y^14*Z^8+34*X^8*Y^8*Z^8+4*X^8*Y^6*Z^8+12*X^7*Y^7*Z^8+4*X^6*Y^8*Z^8+4*X^6*Y^6*Z^8+72*X^4*Y^8*Z^4+6*X^2*Y^12*Z^2+12*X^4*Y^7*Z^4+8*X^4*Y^6*Z^4+4*X^2*Y^8*Z^4+6*X^6*Y^4*Z^2+334*X^4*Y^4*Z^4+2*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+24*X^4*Y^3*Z^4+24*X^3*Y^4*Z^4+6*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+10*X^4*Y^2*Z^4+24*X^3*Y^3*Z^4+6*X^2*Y^6*Z^2+32*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+2*X^4*Y^2*Z^2+504*X^2*Y^4*Z^2+24*X^2*Y^2*Z^4+36*X*Y^6*Z+48*X^2*Y^3*Z^2+24*X*Y^4*Z^2+36*X^3*Y^2*Z+1154*X^2*Y^2*Z^2+12*X*Y^4*Z+24*X*Y^2*Z^3+36*X^3*Y*Z+12*X^2*Y^2*Z+60*X^2*Y*Z^2+36*X*Y^3*Z+192*X*Y^2*Z^2+24*X*Y*Z^3+12*X^2*Y*Z+864*X*Y^2*Z+144*X*Y*Z^2+948*X*Y*Z

Algorithm definition

The algorithm ⟨16×22×24:4837⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨8×11×12:691⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table