Description of fast matrix multiplication algorithm: ⟨16×22×24:4760⟩

Algorithm type

40X8Y8Z8+8X6Y6Z8+76X4Y8Z4+6X2Y12Z2+8X4Y6Z4+4X2Y8Z4+6X6Y4Z2+416X4Y4Z4+2X2Y8Z2+4X2Y4Z6+6X6Y2Z2+2X4Y4Z2+4X4Y2Z4+48X3Y3Z4+6X2Y6Z2+34X2Y4Z4+4X2Y2Z6+2X4Y2Z2+592X2Y4Z2+22X2Y2Z4+36XY6Z+48X2Y3Z2+24XY4Z2+36X3Y2Z+1190X2Y2Z2+12XY4Z+24XY2Z3+36X3YZ+12X2Y2Z+24X2YZ2+36XY3Z+204XY2Z2+24XYZ3+12X2YZ+816XY2Z+132XYZ2+804XYZ40X8Y8Z88X6Y6Z876X4Y8Z46X2Y12Z28X4Y6Z44X2Y8Z46X6Y4Z2416X4Y4Z42X2Y8Z24X2Y4Z66X6Y2Z22X4Y4Z24X4Y2Z448X3Y3Z46X2Y6Z234X2Y4Z44X2Y2Z62X4Y2Z2592X2Y4Z222X2Y2Z436XY6Z48X2Y3Z224XY4Z236X3Y2Z1190X2Y2Z212XY4Z24XY2Z336X3YZ12X2Y2Z24X2YZ236XY3Z204XY2Z224XYZ312X2YZ816XY2Z132XYZ2804XYZ40*X^8*Y^8*Z^8+8*X^6*Y^6*Z^8+76*X^4*Y^8*Z^4+6*X^2*Y^12*Z^2+8*X^4*Y^6*Z^4+4*X^2*Y^8*Z^4+6*X^6*Y^4*Z^2+416*X^4*Y^4*Z^4+2*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+6*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+4*X^4*Y^2*Z^4+48*X^3*Y^3*Z^4+6*X^2*Y^6*Z^2+34*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+2*X^4*Y^2*Z^2+592*X^2*Y^4*Z^2+22*X^2*Y^2*Z^4+36*X*Y^6*Z+48*X^2*Y^3*Z^2+24*X*Y^4*Z^2+36*X^3*Y^2*Z+1190*X^2*Y^2*Z^2+12*X*Y^4*Z+24*X*Y^2*Z^3+36*X^3*Y*Z+12*X^2*Y^2*Z+24*X^2*Y*Z^2+36*X*Y^3*Z+204*X*Y^2*Z^2+24*X*Y*Z^3+12*X^2*Y*Z+816*X*Y^2*Z+132*X*Y*Z^2+804*X*Y*Z

Algorithm definition

The algorithm ⟨16×22×24:4760⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨8×11×12:680⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table