Description of fast matrix multiplication algorithm: ⟨16×20×32:5936⟩

Algorithm type

2X14Y14Z16+2X8Y20Z8+36X8Y8Z8+4X8Y6Z8+12X7Y7Z8+4X6Y8Z8+6X2Y18Z2+6X12Y4Z4+4X8Y4Z8+4X6Y6Z8+42X4Y12Z4+4X4Y8Z8+4X4Y4Z12+12X4Y10Z4+4X2Y12Z4+2X8Y4Z4+10X4Y8Z4+22X4Y4Z8+2X2Y12Z2+6X6Y6Z2+4X4Y6Z4+4X2Y6Z6+2X4Y6Z2+408X4Y4Z4+22X2Y6Z4+24X4Y3Z4+24X3Y4Z4+36XY9Z+60X6Y2Z2+46X4Y2Z4+24X3Y3Z4+346X2Y6Z2+46X2Y4Z4+40X2Y2Z6+24XY6Z2+20X4Y2Z2+68X2Y4Z2+222X2Y2Z4+12XY6Z+36X3Y3Z+24X2Y3Z2+24XY3Z3+12X2Y3Z+1328X2Y2Z2+132XY3Z2+144X3YZ+132X2YZ2+564XY3Z+132XY2Z2+96XYZ3+48X2YZ+48XY2Z+540XYZ2+1056XYZ2X14Y14Z162X8Y20Z836X8Y8Z84X8Y6Z812X7Y7Z84X6Y8Z86X2Y18Z26X12Y4Z44X8Y4Z84X6Y6Z842X4Y12Z44X4Y8Z84X4Y4Z1212X4Y10Z44X2Y12Z42X8Y4Z410X4Y8Z422X4Y4Z82X2Y12Z26X6Y6Z24X4Y6Z44X2Y6Z62X4Y6Z2408X4Y4Z422X2Y6Z424X4Y3Z424X3Y4Z436XY9Z60X6Y2Z246X4Y2Z424X3Y3Z4346X2Y6Z246X2Y4Z440X2Y2Z624XY6Z220X4Y2Z268X2Y4Z2222X2Y2Z412XY6Z36X3Y3Z24X2Y3Z224XY3Z312X2Y3Z1328X2Y2Z2132XY3Z2144X3YZ132X2YZ2564XY3Z132XY2Z296XYZ348X2YZ48XY2Z540XYZ21056XYZ2*X^14*Y^14*Z^16+2*X^8*Y^20*Z^8+36*X^8*Y^8*Z^8+4*X^8*Y^6*Z^8+12*X^7*Y^7*Z^8+4*X^6*Y^8*Z^8+6*X^2*Y^18*Z^2+6*X^12*Y^4*Z^4+4*X^8*Y^4*Z^8+4*X^6*Y^6*Z^8+42*X^4*Y^12*Z^4+4*X^4*Y^8*Z^8+4*X^4*Y^4*Z^12+12*X^4*Y^10*Z^4+4*X^2*Y^12*Z^4+2*X^8*Y^4*Z^4+10*X^4*Y^8*Z^4+22*X^4*Y^4*Z^8+2*X^2*Y^12*Z^2+6*X^6*Y^6*Z^2+4*X^4*Y^6*Z^4+4*X^2*Y^6*Z^6+2*X^4*Y^6*Z^2+408*X^4*Y^4*Z^4+22*X^2*Y^6*Z^4+24*X^4*Y^3*Z^4+24*X^3*Y^4*Z^4+36*X*Y^9*Z+60*X^6*Y^2*Z^2+46*X^4*Y^2*Z^4+24*X^3*Y^3*Z^4+346*X^2*Y^6*Z^2+46*X^2*Y^4*Z^4+40*X^2*Y^2*Z^6+24*X*Y^6*Z^2+20*X^4*Y^2*Z^2+68*X^2*Y^4*Z^2+222*X^2*Y^2*Z^4+12*X*Y^6*Z+36*X^3*Y^3*Z+24*X^2*Y^3*Z^2+24*X*Y^3*Z^3+12*X^2*Y^3*Z+1328*X^2*Y^2*Z^2+132*X*Y^3*Z^2+144*X^3*Y*Z+132*X^2*Y*Z^2+564*X*Y^3*Z+132*X*Y^2*Z^2+96*X*Y*Z^3+48*X^2*Y*Z+48*X*Y^2*Z+540*X*Y*Z^2+1056*X*Y*Z

Algorithm definition

The algorithm ⟨16×20×32:5936⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨8×10×16:848⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table