Description of fast matrix multiplication algorithm: ⟨16×20×27:4888⟩

Algorithm type

52X6Y8Z6+16X3Y12Z3+8X6Y8Z3+8X9Y4Z3+4X6Y4Z6+12X3Y4Z9+24X3Y8Z3+16XY12Z+32X6Y4Z3+12X3Y4Z6+416X4Y4Z4+52X2Y8Z2+8X2Y8Z+64X6Y2Z2+64X4Y4Z2+32X4Y2Z4+20X3Y4Z3+128X2Y6Z2+96X2Y2Z6+24XY8Z+256X4Y2Z2+8X3Y4Z+196X2Y4Z2+96X2Y2Z4+12XY4Z3+32X2Y4Z+12XY4Z2+992X2Y2Z2+20XY4Z+128X3YZ+128X2Y2Z+64X2YZ2+256XY3Z+192XYZ3+512X2YZ+384XY2Z+192XYZ2+320XYZ52X6Y8Z616X3Y12Z38X6Y8Z38X9Y4Z34X6Y4Z612X3Y4Z924X3Y8Z316XY12Z32X6Y4Z312X3Y4Z6416X4Y4Z452X2Y8Z28X2Y8Z64X6Y2Z264X4Y4Z232X4Y2Z420X3Y4Z3128X2Y6Z296X2Y2Z624XY8Z256X4Y2Z28X3Y4Z196X2Y4Z296X2Y2Z412XY4Z332X2Y4Z12XY4Z2992X2Y2Z220XY4Z128X3YZ128X2Y2Z64X2YZ2256XY3Z192XYZ3512X2YZ384XY2Z192XYZ2320XYZ52*X^6*Y^8*Z^6+16*X^3*Y^12*Z^3+8*X^6*Y^8*Z^3+8*X^9*Y^4*Z^3+4*X^6*Y^4*Z^6+12*X^3*Y^4*Z^9+24*X^3*Y^8*Z^3+16*X*Y^12*Z+32*X^6*Y^4*Z^3+12*X^3*Y^4*Z^6+416*X^4*Y^4*Z^4+52*X^2*Y^8*Z^2+8*X^2*Y^8*Z+64*X^6*Y^2*Z^2+64*X^4*Y^4*Z^2+32*X^4*Y^2*Z^4+20*X^3*Y^4*Z^3+128*X^2*Y^6*Z^2+96*X^2*Y^2*Z^6+24*X*Y^8*Z+256*X^4*Y^2*Z^2+8*X^3*Y^4*Z+196*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+12*X*Y^4*Z^3+32*X^2*Y^4*Z+12*X*Y^4*Z^2+992*X^2*Y^2*Z^2+20*X*Y^4*Z+128*X^3*Y*Z+128*X^2*Y^2*Z+64*X^2*Y*Z^2+256*X*Y^3*Z+192*X*Y*Z^3+512*X^2*Y*Z+384*X*Y^2*Z+192*X*Y*Z^2+320*X*Y*Z

Algorithm definition

The algorithm ⟨16×20×27:4888⟩ is the (Kronecker) tensor product of ⟨4×4×9:104⟩ with ⟨4×5×3:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table