Description of fast matrix multiplication algorithm: ⟨16×20×24:4320⟩

Algorithm type

480X4Y4Z4+16X6Y2Z2+32X4Y4Z2+32X4Y2Z4+16X2Y6Z2+16X2Y4Z4+112X4Y2Z2+256X2Y4Z2+224X2Y2Z4+1216X2Y2Z2+32X3YZ+64X2Y2Z+64X2YZ2+32XY3Z+32XY2Z2+224X2YZ+512XY2Z+448XYZ2+512XYZ480X4Y4Z416X6Y2Z232X4Y4Z232X4Y2Z416X2Y6Z216X2Y4Z4112X4Y2Z2256X2Y4Z2224X2Y2Z41216X2Y2Z232X3YZ64X2Y2Z64X2YZ232XY3Z32XY2Z2224X2YZ512XY2Z448XYZ2512XYZ480*X^4*Y^4*Z^4+16*X^6*Y^2*Z^2+32*X^4*Y^4*Z^2+32*X^4*Y^2*Z^4+16*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+112*X^4*Y^2*Z^2+256*X^2*Y^4*Z^2+224*X^2*Y^2*Z^4+1216*X^2*Y^2*Z^2+32*X^3*Y*Z+64*X^2*Y^2*Z+64*X^2*Y*Z^2+32*X*Y^3*Z+32*X*Y^2*Z^2+224*X^2*Y*Z+512*X*Y^2*Z+448*X*Y*Z^2+512*X*Y*Z

Algorithm definition

The algorithm ⟨16×20×24:4320⟩ is the (Kronecker) tensor product of ⟨4×4×4:48⟩ with ⟨4×5×6:90⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table