Description of fast matrix multiplication algorithm: ⟨16×20×22:4116⟩

Algorithm type

22X8Y8Z8+8X8Y8Z6+X12Y4Z4+2X8Y4Z8+X4Y12Z4+X4Y8Z8+2X8Y8Z2+5X8Y4Z4+15X4Y8Z4+10X4Y4Z8+2X8Y4Z2+X4Y8Z2+3X4Y6Z4+4X4Y4Z6+12X8Y2Z2+306X4Y4Z4+12X2Y2Z8+48X4Y4Z3+9X6Y2Z2+7X4Y4Z2+18X4Y2Z4+48X2Y6Z2+33X2Y4Z4+12X4Y4Z+51X4Y2Z2+150X2Y4Z2+114X2Y2Z4+12X4Y2Z+6X2Y4Z+18X2Y3Z2+24X2Y2Z3+72X4YZ+1137X2Y2Z2+72XYZ4+18X3YZ+42X2Y2Z+36X2YZ2+252XY3Z+162XY2Z2+126X2YZ+360XY2Z+324XYZ2+558XYZ22X8Y8Z88X8Y8Z6X12Y4Z42X8Y4Z8X4Y12Z4X4Y8Z82X8Y8Z25X8Y4Z415X4Y8Z410X4Y4Z82X8Y4Z2X4Y8Z23X4Y6Z44X4Y4Z612X8Y2Z2306X4Y4Z412X2Y2Z848X4Y4Z39X6Y2Z27X4Y4Z218X4Y2Z448X2Y6Z233X2Y4Z412X4Y4Z51X4Y2Z2150X2Y4Z2114X2Y2Z412X4Y2Z6X2Y4Z18X2Y3Z224X2Y2Z372X4YZ1137X2Y2Z272XYZ418X3YZ42X2Y2Z36X2YZ2252XY3Z162XY2Z2126X2YZ360XY2Z324XYZ2558XYZ22*X^8*Y^8*Z^8+8*X^8*Y^8*Z^6+X^12*Y^4*Z^4+2*X^8*Y^4*Z^8+X^4*Y^12*Z^4+X^4*Y^8*Z^8+2*X^8*Y^8*Z^2+5*X^8*Y^4*Z^4+15*X^4*Y^8*Z^4+10*X^4*Y^4*Z^8+2*X^8*Y^4*Z^2+X^4*Y^8*Z^2+3*X^4*Y^6*Z^4+4*X^4*Y^4*Z^6+12*X^8*Y^2*Z^2+306*X^4*Y^4*Z^4+12*X^2*Y^2*Z^8+48*X^4*Y^4*Z^3+9*X^6*Y^2*Z^2+7*X^4*Y^4*Z^2+18*X^4*Y^2*Z^4+48*X^2*Y^6*Z^2+33*X^2*Y^4*Z^4+12*X^4*Y^4*Z+51*X^4*Y^2*Z^2+150*X^2*Y^4*Z^2+114*X^2*Y^2*Z^4+12*X^4*Y^2*Z+6*X^2*Y^4*Z+18*X^2*Y^3*Z^2+24*X^2*Y^2*Z^3+72*X^4*Y*Z+1137*X^2*Y^2*Z^2+72*X*Y*Z^4+18*X^3*Y*Z+42*X^2*Y^2*Z+36*X^2*Y*Z^2+252*X*Y^3*Z+162*X*Y^2*Z^2+126*X^2*Y*Z+360*X*Y^2*Z+324*X*Y*Z^2+558*X*Y*Z

Algorithm definition

The algorithm ⟨16×20×22:4116⟩ is the (Kronecker) tensor product of ⟨8×10×11:588⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table