Description of fast matrix multiplication algorithm: ⟨16×20×20:3648⟩

Algorithm type

16X4Y6Z4+64X8Y2Z2+368X4Y4Z4+64X2Y2Z8+208X2Y6Z2+128X2Y4Z4+64X2Y4Z2+64X2Y2Z4+32X2Y3Z2+128X4YZ+976X2Y2Z2+128XYZ4+416XY3Z+256XY2Z2+128XY2Z+128XYZ2+480XYZ16X4Y6Z464X8Y2Z2368X4Y4Z464X2Y2Z8208X2Y6Z2128X2Y4Z464X2Y4Z264X2Y2Z432X2Y3Z2128X4YZ976X2Y2Z2128XYZ4416XY3Z256XY2Z2128XY2Z128XYZ2480XYZ16*X^4*Y^6*Z^4+64*X^8*Y^2*Z^2+368*X^4*Y^4*Z^4+64*X^2*Y^2*Z^8+208*X^2*Y^6*Z^2+128*X^2*Y^4*Z^4+64*X^2*Y^4*Z^2+64*X^2*Y^2*Z^4+32*X^2*Y^3*Z^2+128*X^4*Y*Z+976*X^2*Y^2*Z^2+128*X*Y*Z^4+416*X*Y^3*Z+256*X*Y^2*Z^2+128*X*Y^2*Z+128*X*Y*Z^2+480*X*Y*Z

Algorithm definition

The algorithm ⟨16×20×20:3648⟩ is the (Kronecker) tensor product of ⟨4×4×4:48⟩ with ⟨4×5×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table