Description of fast matrix multiplication algorithm: ⟨16×18×21:3402⟩

Algorithm type

108X4Y4Z6+270X4Y4Z4+36X2Y2Z8+108X4Y4Z2+216X2Y2Z6+108X4Y2Z3+108X2Y4Z3+270X4Y2Z2+270X2Y4Z2+216X2Y2Z4+108X4Y2Z+108X2Y4Z+36X2YZ4+36XY2Z4+180X2Y2Z2+216X2YZ3+216XY2Z3+216X2YZ2+216XY2Z2+180X2YZ+180XY2Z108X4Y4Z6270X4Y4Z436X2Y2Z8108X4Y4Z2216X2Y2Z6108X4Y2Z3108X2Y4Z3270X4Y2Z2270X2Y4Z2216X2Y2Z4108X4Y2Z108X2Y4Z36X2YZ436XY2Z4180X2Y2Z2216X2YZ3216XY2Z3216X2YZ2216XY2Z2180X2YZ180XY2Z108*X^4*Y^4*Z^6+270*X^4*Y^4*Z^4+36*X^2*Y^2*Z^8+108*X^4*Y^4*Z^2+216*X^2*Y^2*Z^6+108*X^4*Y^2*Z^3+108*X^2*Y^4*Z^3+270*X^4*Y^2*Z^2+270*X^2*Y^4*Z^2+216*X^2*Y^2*Z^4+108*X^4*Y^2*Z+108*X^2*Y^4*Z+36*X^2*Y*Z^4+36*X*Y^2*Z^4+180*X^2*Y^2*Z^2+216*X^2*Y*Z^3+216*X*Y^2*Z^3+216*X^2*Y*Z^2+216*X*Y^2*Z^2+180*X^2*Y*Z+180*X*Y^2*Z

Algorithm definition

The algorithm ⟨16×18×21:3402⟩ is the (Kronecker) tensor product of ⟨4×3×7:63⟩ with ⟨4×6×3:54⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table