Description of fast matrix multiplication algorithm: ⟨16×16×27:3952⟩

Algorithm type

40X6Y8Z6+12X3Y12Z3+8X6Y8Z3+8X9Y4Z3+8X6Y4Z6+12X3Y4Z9+4X3Y8Z3+12XY12Z+44X6Y4Z3+4X3Y4Z6+320X4Y4Z4+40X2Y8Z2+8X2Y8Z+64X6Y2Z2+64X4Y4Z2+64X4Y2Z4+12X3Y4Z3+96X2Y6Z2+96X2Y2Z6+4XY8Z+352X4Y2Z2+8X3Y4Z+40X2Y4Z2+32X2Y2Z4+12XY4Z3+44X2Y4Z+4XY4Z2+736X2Y2Z2+12XY4Z+128X3YZ+128X2Y2Z+128X2YZ2+192XY3Z+192XYZ3+704X2YZ+64XY2Z+64XYZ2+192XYZ40X6Y8Z612X3Y12Z38X6Y8Z38X9Y4Z38X6Y4Z612X3Y4Z94X3Y8Z312XY12Z44X6Y4Z34X3Y4Z6320X4Y4Z440X2Y8Z28X2Y8Z64X6Y2Z264X4Y4Z264X4Y2Z412X3Y4Z396X2Y6Z296X2Y2Z64XY8Z352X4Y2Z28X3Y4Z40X2Y4Z232X2Y2Z412XY4Z344X2Y4Z4XY4Z2736X2Y2Z212XY4Z128X3YZ128X2Y2Z128X2YZ2192XY3Z192XYZ3704X2YZ64XY2Z64XYZ2192XYZ40*X^6*Y^8*Z^6+12*X^3*Y^12*Z^3+8*X^6*Y^8*Z^3+8*X^9*Y^4*Z^3+8*X^6*Y^4*Z^6+12*X^3*Y^4*Z^9+4*X^3*Y^8*Z^3+12*X*Y^12*Z+44*X^6*Y^4*Z^3+4*X^3*Y^4*Z^6+320*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+8*X^2*Y^8*Z+64*X^6*Y^2*Z^2+64*X^4*Y^4*Z^2+64*X^4*Y^2*Z^4+12*X^3*Y^4*Z^3+96*X^2*Y^6*Z^2+96*X^2*Y^2*Z^6+4*X*Y^8*Z+352*X^4*Y^2*Z^2+8*X^3*Y^4*Z+40*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+12*X*Y^4*Z^3+44*X^2*Y^4*Z+4*X*Y^4*Z^2+736*X^2*Y^2*Z^2+12*X*Y^4*Z+128*X^3*Y*Z+128*X^2*Y^2*Z+128*X^2*Y*Z^2+192*X*Y^3*Z+192*X*Y*Z^3+704*X^2*Y*Z+64*X*Y^2*Z+64*X*Y*Z^2+192*X*Y*Z

Algorithm definition

The algorithm ⟨16×16×27:3952⟩ is the (Kronecker) tensor product of ⟨4×4×3:38⟩ with ⟨4×4×9:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table