Description of fast matrix multiplication algorithm: ⟨16×16×25:3721⟩

Algorithm type

XY4Z16+2X2Y4Z12+36X9Y4Z4+X4Y4Z9+2XY4Z12+12X6Y4Z6+4X2Y2Z12+24X9Y4Z2+4X4Y2Z9+12X3Y4Z8+2X2Y4Z9+4X9Y4Z+108X6Y4Z4+24X6Y2Z6+18X4Y4Z6+4X4YZ9+18X2Y4Z8+XY4Z9+96X9Y2Z2+4X6Y4Z3+12X3Y4Z6+4X2Y2Z9+8XY4Z8+32X9Y2Z+36X6Y4Z2+48X6Y2Z4+81X4Y4Z4+44X4Y2Z6+26X2Y4Z6+8X2Y2Z8+64X9YZ+24X6Y2Z3+16X4YZ6+24X3Y6Z2+52X3Y4Z4+4X2Y6Z3+4XY9Z+4XY6Z4+8XY4Z6+280X6Y2Z2+32X6YZ3+72X4Y2Z4+8X3Y6Z+4X3Y4Z3+36X2Y6Z2+72X2Y4Z4+24X2Y2Z6+4XY6Z3+40X6Y2Z+64X6YZ2+20X4Y2Z3+16X4YZ4+40X3Y4Z2+16X3Y2Z4+4X2Y4Z3+16XY6Z2+20XY4Z4+160X6YZ+180X4Y2Z2+40X4YZ3+8X3Y4Z+16X3Y2Z3+36X2Y4Z2+8X2Y3Z3+52X2Y2Z4+8XY6Z+4XY4Z3+80X4YZ2+32X3Y3Z+172X3Y2Z2+16X2Y3Z2+46X2Y2Z3+16XY4Z2+18XY2Z4+100X4YZ+68X3Y2Z+40X2Y3Z+258X2Y2Z2+36X2YZ3+4XY4Z+18XY2Z3+144X3YZ+40X2Y2Z+72X2YZ2+36XY3Z+72XY2Z2+180X2YZ+36XY2Z+81XYZXY4Z162X2Y4Z1236X9Y4Z4X4Y4Z92XY4Z1212X6Y4Z64X2Y2Z1224X9Y4Z24X4Y2Z912X3Y4Z82X2Y4Z94X9Y4Z108X6Y4Z424X6Y2Z618X4Y4Z64X4YZ918X2Y4Z8XY4Z996X9Y2Z24X6Y4Z312X3Y4Z64X2Y2Z98XY4Z832X9Y2Z36X6Y4Z248X6Y2Z481X4Y4Z444X4Y2Z626X2Y4Z68X2Y2Z864X9YZ24X6Y2Z316X4YZ624X3Y6Z252X3Y4Z44X2Y6Z34XY9Z4XY6Z48XY4Z6280X6Y2Z232X6YZ372X4Y2Z48X3Y6Z4X3Y4Z336X2Y6Z272X2Y4Z424X2Y2Z64XY6Z340X6Y2Z64X6YZ220X4Y2Z316X4YZ440X3Y4Z216X3Y2Z44X2Y4Z316XY6Z220XY4Z4160X6YZ180X4Y2Z240X4YZ38X3Y4Z16X3Y2Z336X2Y4Z28X2Y3Z352X2Y2Z48XY6Z4XY4Z380X4YZ232X3Y3Z172X3Y2Z216X2Y3Z246X2Y2Z316XY4Z218XY2Z4100X4YZ68X3Y2Z40X2Y3Z258X2Y2Z236X2YZ34XY4Z18XY2Z3144X3YZ40X2Y2Z72X2YZ236XY3Z72XY2Z2180X2YZ36XY2Z81XYZX*Y^4*Z^16+2*X^2*Y^4*Z^12+36*X^9*Y^4*Z^4+X^4*Y^4*Z^9+2*X*Y^4*Z^12+12*X^6*Y^4*Z^6+4*X^2*Y^2*Z^12+24*X^9*Y^4*Z^2+4*X^4*Y^2*Z^9+12*X^3*Y^4*Z^8+2*X^2*Y^4*Z^9+4*X^9*Y^4*Z+108*X^6*Y^4*Z^4+24*X^6*Y^2*Z^6+18*X^4*Y^4*Z^6+4*X^4*Y*Z^9+18*X^2*Y^4*Z^8+X*Y^4*Z^9+96*X^9*Y^2*Z^2+4*X^6*Y^4*Z^3+12*X^3*Y^4*Z^6+4*X^2*Y^2*Z^9+8*X*Y^4*Z^8+32*X^9*Y^2*Z+36*X^6*Y^4*Z^2+48*X^6*Y^2*Z^4+81*X^4*Y^4*Z^4+44*X^4*Y^2*Z^6+26*X^2*Y^4*Z^6+8*X^2*Y^2*Z^8+64*X^9*Y*Z+24*X^6*Y^2*Z^3+16*X^4*Y*Z^6+24*X^3*Y^6*Z^2+52*X^3*Y^4*Z^4+4*X^2*Y^6*Z^3+4*X*Y^9*Z+4*X*Y^6*Z^4+8*X*Y^4*Z^6+280*X^6*Y^2*Z^2+32*X^6*Y*Z^3+72*X^4*Y^2*Z^4+8*X^3*Y^6*Z+4*X^3*Y^4*Z^3+36*X^2*Y^6*Z^2+72*X^2*Y^4*Z^4+24*X^2*Y^2*Z^6+4*X*Y^6*Z^3+40*X^6*Y^2*Z+64*X^6*Y*Z^2+20*X^4*Y^2*Z^3+16*X^4*Y*Z^4+40*X^3*Y^4*Z^2+16*X^3*Y^2*Z^4+4*X^2*Y^4*Z^3+16*X*Y^6*Z^2+20*X*Y^4*Z^4+160*X^6*Y*Z+180*X^4*Y^2*Z^2+40*X^4*Y*Z^3+8*X^3*Y^4*Z+16*X^3*Y^2*Z^3+36*X^2*Y^4*Z^2+8*X^2*Y^3*Z^3+52*X^2*Y^2*Z^4+8*X*Y^6*Z+4*X*Y^4*Z^3+80*X^4*Y*Z^2+32*X^3*Y^3*Z+172*X^3*Y^2*Z^2+16*X^2*Y^3*Z^2+46*X^2*Y^2*Z^3+16*X*Y^4*Z^2+18*X*Y^2*Z^4+100*X^4*Y*Z+68*X^3*Y^2*Z+40*X^2*Y^3*Z+258*X^2*Y^2*Z^2+36*X^2*Y*Z^3+4*X*Y^4*Z+18*X*Y^2*Z^3+144*X^3*Y*Z+40*X^2*Y^2*Z+72*X^2*Y*Z^2+36*X*Y^3*Z+72*X*Y^2*Z^2+180*X^2*Y*Z+36*X*Y^2*Z+81*X*Y*Z

Algorithm definition

The algorithm ⟨16×16×25:3721⟩ is the (Kronecker) tensor product of ⟨4×4×5:61⟩ with ⟨4×4×5:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table