Description of fast matrix multiplication algorithm: ⟨16×16×18:2704⟩

Algorithm type

24X6Y8Z6+8X9Y4Z3+32X6Y4Z3+192X4Y4Z4+24X2Y8Z2+64X6Y2Z2+40X3Y4Z3+256X4Y2Z2+8X3Y4Z+32X2Y4Z+704X2Y2Z2+40XY4Z+128X3YZ+512X2YZ+640XYZ24X6Y8Z68X9Y4Z332X6Y4Z3192X4Y4Z424X2Y8Z264X6Y2Z240X3Y4Z3256X4Y2Z28X3Y4Z32X2Y4Z704X2Y2Z240XY4Z128X3YZ512X2YZ640XYZ24*X^6*Y^8*Z^6+8*X^9*Y^4*Z^3+32*X^6*Y^4*Z^3+192*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+64*X^6*Y^2*Z^2+40*X^3*Y^4*Z^3+256*X^4*Y^2*Z^2+8*X^3*Y^4*Z+32*X^2*Y^4*Z+704*X^2*Y^2*Z^2+40*X*Y^4*Z+128*X^3*Y*Z+512*X^2*Y*Z+640*X*Y*Z

Algorithm definition

The algorithm ⟨16×16×18:2704⟩ is the (Kronecker) tensor product of ⟨4×4×2:26⟩ with ⟨4×4×9:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table