Description of fast matrix multiplication algorithm: ⟨15×21×30:5360⟩

Algorithm type

16X4Y6Z9+64X2Y12Z3+16X2Y9Z6+24X2Y6Z9+32X2Y3Z12+640X4Y6Z6+96XY12Z3+24XY9Z6+48XY3Z12+16X6Y3Z6+64X8Y3Z3+80X2Y9Z3+992X2Y6Z6+224X2Y3Z9+160X4Y3Z6+120XY9Z3+48XY6Z6+336XY3Z9+80X6Y3Z3+24X3Y3Z6+16X2Y6Z3+512X2Y3Z6+176X4Y3Z3+24XY6Z3+408XY3Z6+120X3Y3Z3+472X2Y3Z3+528XY3Z316X4Y6Z964X2Y12Z316X2Y9Z624X2Y6Z932X2Y3Z12640X4Y6Z696XY12Z324XY9Z648XY3Z1216X6Y3Z664X8Y3Z380X2Y9Z3992X2Y6Z6224X2Y3Z9160X4Y3Z6120XY9Z348XY6Z6336XY3Z980X6Y3Z324X3Y3Z616X2Y6Z3512X2Y3Z6176X4Y3Z324XY6Z3408XY3Z6120X3Y3Z3472X2Y3Z3528XY3Z316*X^4*Y^6*Z^9+64*X^2*Y^12*Z^3+16*X^2*Y^9*Z^6+24*X^2*Y^6*Z^9+32*X^2*Y^3*Z^12+640*X^4*Y^6*Z^6+96*X*Y^12*Z^3+24*X*Y^9*Z^6+48*X*Y^3*Z^12+16*X^6*Y^3*Z^6+64*X^8*Y^3*Z^3+80*X^2*Y^9*Z^3+992*X^2*Y^6*Z^6+224*X^2*Y^3*Z^9+160*X^4*Y^3*Z^6+120*X*Y^9*Z^3+48*X*Y^6*Z^6+336*X*Y^3*Z^9+80*X^6*Y^3*Z^3+24*X^3*Y^3*Z^6+16*X^2*Y^6*Z^3+512*X^2*Y^3*Z^6+176*X^4*Y^3*Z^3+24*X*Y^6*Z^3+408*X*Y^3*Z^6+120*X^3*Y^3*Z^3+472*X^2*Y^3*Z^3+528*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨15×21×30:5360⟩ is the (Kronecker) tensor product of ⟨5×7×5:134⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table