Description of fast matrix multiplication algorithm: ⟨15×20×25:4371⟩

Algorithm type

3X9Y2Z+13X6Y4Z2+416X4Y4Z4+13X4Y2Z6+13X2Y6Z4+4X2YZ9+2XY9Z2+X6Y4Z+2XY6Z4+96X6Y2Z2+3X6YZ3+45X4Y4Z2+13X4Y2Z4+2X3Y6Z+65X2Y6Z2+77X2Y4Z4+130X2Y2Z6+4XY3Z6+6X6Y2Z+3X6YZ2+X4Y4Z+X4Y2Z3+2X3Y4Z2+2X2Y6Z+10X2YZ6+10XY6Z2+2XY4Z4+4XY2Z6+33X6YZ+240X4Y2Z2+3X4YZ3+8X3Y4Z+3X3Y3Z2+4X3Y2Z3+402X2Y4Z2+2X2Y3Z3+337X2Y2Z4+22XY6Z+6XY3Z4+44XYZ6+14X4Y2Z+3X4YZ2+9X3Y2Z2+19X2Y4Z+5X2Y3Z2+12X2Y2Z3+6X2YZ4+30XY4Z2+28XY2Z4+33X4YZ+38X3Y2Z+33X3YZ2+22X2Y3Z+496X2Y2Z2+49X2YZ3+88XY4Z+27XY3Z2+44XY2Z3+66XYZ4+66X3YZ+148X2Y2Z+104X2YZ2+44XY3Z+203XY2Z2+88XYZ3+121X2YZ+231XY2Z+187XYZ2+110XYZ3X9Y2Z13X6Y4Z2416X4Y4Z413X4Y2Z613X2Y6Z44X2YZ92XY9Z2X6Y4Z2XY6Z496X6Y2Z23X6YZ345X4Y4Z213X4Y2Z42X3Y6Z65X2Y6Z277X2Y4Z4130X2Y2Z64XY3Z66X6Y2Z3X6YZ2X4Y4ZX4Y2Z32X3Y4Z22X2Y6Z10X2YZ610XY6Z22XY4Z44XY2Z633X6YZ240X4Y2Z23X4YZ38X3Y4Z3X3Y3Z24X3Y2Z3402X2Y4Z22X2Y3Z3337X2Y2Z422XY6Z6XY3Z444XYZ614X4Y2Z3X4YZ29X3Y2Z219X2Y4Z5X2Y3Z212X2Y2Z36X2YZ430XY4Z228XY2Z433X4YZ38X3Y2Z33X3YZ222X2Y3Z496X2Y2Z249X2YZ388XY4Z27XY3Z244XY2Z366XYZ466X3YZ148X2Y2Z104X2YZ244XY3Z203XY2Z288XYZ3121X2YZ231XY2Z187XYZ2110XYZ3*X^9*Y^2*Z+13*X^6*Y^4*Z^2+416*X^4*Y^4*Z^4+13*X^4*Y^2*Z^6+13*X^2*Y^6*Z^4+4*X^2*Y*Z^9+2*X*Y^9*Z^2+X^6*Y^4*Z+2*X*Y^6*Z^4+96*X^6*Y^2*Z^2+3*X^6*Y*Z^3+45*X^4*Y^4*Z^2+13*X^4*Y^2*Z^4+2*X^3*Y^6*Z+65*X^2*Y^6*Z^2+77*X^2*Y^4*Z^4+130*X^2*Y^2*Z^6+4*X*Y^3*Z^6+6*X^6*Y^2*Z+3*X^6*Y*Z^2+X^4*Y^4*Z+X^4*Y^2*Z^3+2*X^3*Y^4*Z^2+2*X^2*Y^6*Z+10*X^2*Y*Z^6+10*X*Y^6*Z^2+2*X*Y^4*Z^4+4*X*Y^2*Z^6+33*X^6*Y*Z+240*X^4*Y^2*Z^2+3*X^4*Y*Z^3+8*X^3*Y^4*Z+3*X^3*Y^3*Z^2+4*X^3*Y^2*Z^3+402*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+337*X^2*Y^2*Z^4+22*X*Y^6*Z+6*X*Y^3*Z^4+44*X*Y*Z^6+14*X^4*Y^2*Z+3*X^4*Y*Z^2+9*X^3*Y^2*Z^2+19*X^2*Y^4*Z+5*X^2*Y^3*Z^2+12*X^2*Y^2*Z^3+6*X^2*Y*Z^4+30*X*Y^4*Z^2+28*X*Y^2*Z^4+33*X^4*Y*Z+38*X^3*Y^2*Z+33*X^3*Y*Z^2+22*X^2*Y^3*Z+496*X^2*Y^2*Z^2+49*X^2*Y*Z^3+88*X*Y^4*Z+27*X*Y^3*Z^2+44*X*Y^2*Z^3+66*X*Y*Z^4+66*X^3*Y*Z+148*X^2*Y^2*Z+104*X^2*Y*Z^2+44*X*Y^3*Z+203*X*Y^2*Z^2+88*X*Y*Z^3+121*X^2*Y*Z+231*X*Y^2*Z+187*X*Y*Z^2+110*X*Y*Z

Algorithm definition

The algorithm ⟨15×20×25:4371⟩ is the (Kronecker) tensor product of ⟨3×4×5:47⟩ with ⟨5×5×5:93⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table