Description of fast matrix multiplication algorithm: ⟨15×20×21:3654⟩

Algorithm type

6X4Y9Z2+2X2Y12Z+102X4Y6Z4+10XY12Z+12X8Y3Z2+6X4Y3Z6+30X2Y9Z2+30X8Y2Z2+27X4Y6Z2+255X4Y4Z4+15X4Y2Z6+12X2Y9Z+34X2Y8Z2+12X8YZ2+6X6Y3Z2+12X4Y3Z4+6X4YZ6+4X2Y8Z+30X2Y3Z6+60XY9Z+15X6Y2Z2+30X4Y4Z2+132X4Y2Z4+285X2Y6Z2+75X2Y2Z6+2XY8Z+6X6YZ2+4X4Y4Z+84X4Y3Z2+12X4YZ4+36X2Y6Z+2X2Y4Z3+6X2Y3Z4+30X2YZ6+24X4Y3Z+207X4Y2Z2+2X3Y4Z+223X2Y4Z2+12X2Y3Z3+15X2Y2Z4+72XY6Z+10XY4Z3+24X4Y2Z+78X4YZ2+12X3Y3Z+50X2Y4Z+96X2Y3Z2+12X2Y2Z3+6X2YZ4+2XY4Z2+60XY3Z3+20X4YZ+12X3Y2Z+166X2Y3Z+305X2Y2Z2+10X2YZ3+26XY4Z+12XY3Z2+60XY2Z3+10X3YZ+176X2Y2Z+62X2YZ2+134XY3Z+12XY2Z2+50XYZ3+130X2YZ+94XY2Z+10XYZ2+70XYZ6X4Y9Z22X2Y12Z102X4Y6Z410XY12Z12X8Y3Z26X4Y3Z630X2Y9Z230X8Y2Z227X4Y6Z2255X4Y4Z415X4Y2Z612X2Y9Z34X2Y8Z212X8YZ26X6Y3Z212X4Y3Z46X4YZ64X2Y8Z30X2Y3Z660XY9Z15X6Y2Z230X4Y4Z2132X4Y2Z4285X2Y6Z275X2Y2Z62XY8Z6X6YZ24X4Y4Z84X4Y3Z212X4YZ436X2Y6Z2X2Y4Z36X2Y3Z430X2YZ624X4Y3Z207X4Y2Z22X3Y4Z223X2Y4Z212X2Y3Z315X2Y2Z472XY6Z10XY4Z324X4Y2Z78X4YZ212X3Y3Z50X2Y4Z96X2Y3Z212X2Y2Z36X2YZ42XY4Z260XY3Z320X4YZ12X3Y2Z166X2Y3Z305X2Y2Z210X2YZ326XY4Z12XY3Z260XY2Z310X3YZ176X2Y2Z62X2YZ2134XY3Z12XY2Z250XYZ3130X2YZ94XY2Z10XYZ270XYZ6*X^4*Y^9*Z^2+2*X^2*Y^12*Z+102*X^4*Y^6*Z^4+10*X*Y^12*Z+12*X^8*Y^3*Z^2+6*X^4*Y^3*Z^6+30*X^2*Y^9*Z^2+30*X^8*Y^2*Z^2+27*X^4*Y^6*Z^2+255*X^4*Y^4*Z^4+15*X^4*Y^2*Z^6+12*X^2*Y^9*Z+34*X^2*Y^8*Z^2+12*X^8*Y*Z^2+6*X^6*Y^3*Z^2+12*X^4*Y^3*Z^4+6*X^4*Y*Z^6+4*X^2*Y^8*Z+30*X^2*Y^3*Z^6+60*X*Y^9*Z+15*X^6*Y^2*Z^2+30*X^4*Y^4*Z^2+132*X^4*Y^2*Z^4+285*X^2*Y^6*Z^2+75*X^2*Y^2*Z^6+2*X*Y^8*Z+6*X^6*Y*Z^2+4*X^4*Y^4*Z+84*X^4*Y^3*Z^2+12*X^4*Y*Z^4+36*X^2*Y^6*Z+2*X^2*Y^4*Z^3+6*X^2*Y^3*Z^4+30*X^2*Y*Z^6+24*X^4*Y^3*Z+207*X^4*Y^2*Z^2+2*X^3*Y^4*Z+223*X^2*Y^4*Z^2+12*X^2*Y^3*Z^3+15*X^2*Y^2*Z^4+72*X*Y^6*Z+10*X*Y^4*Z^3+24*X^4*Y^2*Z+78*X^4*Y*Z^2+12*X^3*Y^3*Z+50*X^2*Y^4*Z+96*X^2*Y^3*Z^2+12*X^2*Y^2*Z^3+6*X^2*Y*Z^4+2*X*Y^4*Z^2+60*X*Y^3*Z^3+20*X^4*Y*Z+12*X^3*Y^2*Z+166*X^2*Y^3*Z+305*X^2*Y^2*Z^2+10*X^2*Y*Z^3+26*X*Y^4*Z+12*X*Y^3*Z^2+60*X*Y^2*Z^3+10*X^3*Y*Z+176*X^2*Y^2*Z+62*X^2*Y*Z^2+134*X*Y^3*Z+12*X*Y^2*Z^2+50*X*Y*Z^3+130*X^2*Y*Z+94*X*Y^2*Z+10*X*Y*Z^2+70*X*Y*Z

Algorithm definition

The algorithm ⟨15×20×21:3654⟩ is the (Kronecker) tensor product of ⟨3×4×7:63⟩ with ⟨5×5×3:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table