Description of fast matrix multiplication algorithm: ⟨15×18×29:4576⟩

Algorithm type

32X2Y9Z6+64X2Y3Z12+544X4Y6Z6+48XY9Z6+96XY3Z12+32X6Y3Z6+160X2Y9Z3+880X2Y6Z6+32X2Y3Z9+64X4Y3Z6+240XY9Z3+96XY6Z6+48XY3Z9+96X6Y3Z3+48X3Y3Z6+384X2Y3Z6+36X6Y2Z2+32X4Y3Z3+432XY3Z6+144X3Y3Z3+18X2Y4Z2+240X2Y3Z3+72X2Y2Z4+4XY6Z+8X3Y3Z+288XY3Z3+24X3Y2Z+24X3YZ2+18X2Y2Z2+12XY4Z+16XY3Z2+48XYZ4+52X3YZ+4XY3Z+60XY2Z2+38XY2Z+116XYZ2+26XYZ32X2Y9Z664X2Y3Z12544X4Y6Z648XY9Z696XY3Z1232X6Y3Z6160X2Y9Z3880X2Y6Z632X2Y3Z964X4Y3Z6240XY9Z396XY6Z648XY3Z996X6Y3Z348X3Y3Z6384X2Y3Z636X6Y2Z232X4Y3Z3432XY3Z6144X3Y3Z318X2Y4Z2240X2Y3Z372X2Y2Z44XY6Z8X3Y3Z288XY3Z324X3Y2Z24X3YZ218X2Y2Z212XY4Z16XY3Z248XYZ452X3YZ4XY3Z60XY2Z238XY2Z116XYZ226XYZ32*X^2*Y^9*Z^6+64*X^2*Y^3*Z^12+544*X^4*Y^6*Z^6+48*X*Y^9*Z^6+96*X*Y^3*Z^12+32*X^6*Y^3*Z^6+160*X^2*Y^9*Z^3+880*X^2*Y^6*Z^6+32*X^2*Y^3*Z^9+64*X^4*Y^3*Z^6+240*X*Y^9*Z^3+96*X*Y^6*Z^6+48*X*Y^3*Z^9+96*X^6*Y^3*Z^3+48*X^3*Y^3*Z^6+384*X^2*Y^3*Z^6+36*X^6*Y^2*Z^2+32*X^4*Y^3*Z^3+432*X*Y^3*Z^6+144*X^3*Y^3*Z^3+18*X^2*Y^4*Z^2+240*X^2*Y^3*Z^3+72*X^2*Y^2*Z^4+4*X*Y^6*Z+8*X^3*Y^3*Z+288*X*Y^3*Z^3+24*X^3*Y^2*Z+24*X^3*Y*Z^2+18*X^2*Y^2*Z^2+12*X*Y^4*Z+16*X*Y^3*Z^2+48*X*Y*Z^4+52*X^3*Y*Z+4*X*Y^3*Z+60*X*Y^2*Z^2+38*X*Y^2*Z+116*X*Y*Z^2+26*X*Y*Z

Algorithm definition

The algorithm ⟨15×18×29:4576⟩ is the (Kronecker) tensor product of ⟨1×2×1:2⟩ with ⟨15×9×29:2288⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table